Comparison of cytotoxic and inflammatory responses of pristine and functionalized multi-walled carbon nanotubes in RAW 264.7 mouse macrophages

2012 ◽  
Vol 219-220 ◽  
pp. 203-212 ◽  
Author(s):  
Ting Zhang ◽  
Meng Tang ◽  
Lu Kong ◽  
Han Li ◽  
Tao Zhang ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 539
Author(s):  
Mai T. Huynh ◽  
Carole Mikoryak ◽  
Paul Pantano ◽  
Rockford Draper

Previously, we noted that carboxylated multi-walled carbon nanotubes (cMWNTs) coated with Pluronic® F-108 (PF108) bound to and were accumulated by macrophages, but that pristine multi-walled carbon nanotubes (pMWNTs) coated with PF108 were not (Wang et al., Nanotoxicology2018, 12, 677). Subsequent studies with Chinese hamster ovary (CHO) cells that overexpressed scavenger receptor A1 (SR-A1) and with macrophages derived from mice knocked out for SR-A1 provided evidence that SR-A1 was a receptor of PF108-cMWNTs (Wang et al., Nanomaterials (Basel) 2020, 10, 2417). Herein, we replaced the PF108 coat with bovine serum albumin (BSA) to investigate how a BSA corona affected the interaction of multi-walled carbon nanotubes (MWNTs) with cells. Both BSA-coated cMWNTs and pMWNTs bound to and were accumulated by RAW 264.7 macrophages, although the cells bound two times more BSA-coated cMWNT than pMWNTs. RAW 264.7 cells that were deleted for SR-A1 using CRISPR-Cas9 technology had markedly reduced binding and accumulation of both BSA-coated cMWNTs and pMWNTs, suggesting that SR-A1 was responsible for the uptake of both MWNT types. Moreover, CHO cells that ectopically expressed SR-A1 accumulated both MWNT types, whereas wild-type CHO cells did not. One model to explain these results is that SR-A1 can interact with two structural features of BSA-coated cMWNTs, one inherent to the oxidized nanotubes (such as COOH and other oxidized groups) and the other provided by the BSA corona; whereas SR-A1 only interacts with the BSA corona of BSA-pMWNTs.


2012 ◽  
Vol 12 (3) ◽  
pp. 2101-2112 ◽  
Author(s):  
Shefang Ye ◽  
Yuanqin Jiang ◽  
Honggang Zhang ◽  
Yifang Wang ◽  
Yihui Wu ◽  
...  

Cellulose ◽  
2021 ◽  
Author(s):  
Katsuhide Fujita ◽  
Sawae Obara ◽  
Junko Maru ◽  
Shigehisa Endoh

Abstract Safety assessment of cellulose nanofibrils (CNFs) is required to accelerate the utilization of these materials in industrial applications. The present study aimed to characterize the effects on rat pulmonary inflammation over a period of 90 days following intratracheal instillation of three types of CNFs or multi-walled carbon nanotubes (MWCNTs) at doses of 0.5, 1.0, or 2.0 mg/kg. The pulmonary inflammatory responses induced by phosphorylated CNFs (CNF1), 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized CNFs (CNF2), CNFs produced via mechanical defibrillation (CNF3), and MWCNTs were investigated using bronchoalveolar lavage fluid analysis, histopathological findings, and comprehensive gene expression profiling of rat lungs. CNF1 and CNF2 with approximately equal diameter (7.0–8.0 nm) and length (0.8–1.0 µm) distributions induced inflammation after dosing, which was attenuated 90 days post-instillation. CNF3 of relatively greater thickness (21.2 nm) and longer length (1.7 μm) deposited around the terminal bronchioles were observed after instillation. Acute inflammatory responses in the alveoli induced by CNF3 were mild compared with those induced by other materials and attenuated 90 days post-instillation. MWCNTs induced severe pulmonary inflammatory responses that continued during the test period. The inflammation failed to resolve within 90 days post-instillation. A hierarchical cluster analysis revealed comparable gene expression profiles for CNF1, CNF2, and CNF3, whereas profiles of MWCNTs were different from those of other test substances. This study suggests that pulmonary inflammation is associated with the diameter and length distributions of CNFs and that the pulmonary inflammation caused by CNFs is mild compared with that caused by MWCNTs. Graphic abstract


Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document