Establishment of a novel advanced oxidation process for economical and effective removal of SO2 and NO

2016 ◽  
Vol 318 ◽  
pp. 224-232 ◽  
Author(s):  
Runlong Hao ◽  
Yi Zhao ◽  
Bo Yuan ◽  
Sihan Zhou ◽  
Shuo Yang
2015 ◽  
Vol 6 (1) ◽  
pp. 59-71 ◽  
Author(s):  
G. Selvabharathi ◽  
S. Adishkumar ◽  
S. Jenefa ◽  
G. Ginni ◽  
J. Rajesh Banu ◽  
...  

This study investigated the practical application of combined advanced oxidation processes (AOPs), such as homogeneous TiO2 photocatalysis and heterogeneous photo-Fenton, for the treatment of tannery wastewaters. An optimization study was conducted on the photocatalytic degradation of tannery wastewaters, in order to understand the effects of different operating parameters on the degradation kinetics. The chemical oxygen demand of tannery wastewater decreased from an initial level of 3,400 mg/L in raw wastewater to 140 mg/L (96% removal) in wastewater treated by the combined advanced oxidation process at optimum pH 7, TiO2 dosage of 0.2 g/L, Fe2+ dosage of 0.5 g/L, H2O2 dosage of 1.8 g/L and a treatment time of 4 hours. The biodegradability of wastewater increased from an initial level of 0.4 to 0.7 after treatment under optimum experimental conditions at a treatment time of 60 min. An annual treatment cost of US$21.34/m3 of treated water was obtained. The combined advanced oxidation process proved to be an efficient and appropriate technique for the effective removal of complex organic compounds in industrial wastewater.


2019 ◽  
Vol 5 (11) ◽  
pp. 1985-1992 ◽  
Author(s):  
Nor Elhouda Chadi ◽  
Slimane Merouani ◽  
Oualid Hamdaoui ◽  
Mohammed Bouhelassa ◽  
Muthupandian Ashokkumar

We have recently reported that the reaction of H2O2/IO4− could be a new advanced oxidation process for water treatment [N. E. Chadi, S. Merouani, O. Hamdaoui, M. Bouhelassa and M. Ashokkumar, Environ. Sci.: Water Res. Technol., 2019, 5, 1113–1123].


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1686 ◽  
Author(s):  
Carolin Heim ◽  
Mohamad Rajab ◽  
Giorgia Greco ◽  
Sylvia Grosse ◽  
Jörg E. Drewes ◽  
...  

The focus of this study was to investigate the efficacy of applying boron-doped diamond (BDD) electrodes in an electrochemical advanced oxidation process, for the removal of the target compound diclofenac (DCF) in different water matrices. The reduction of DCF, and at the same time the formation of transformation products (TPs) and inorganic by-products, was investigated as a function of electrode settings and the duration of treatment. Kinetic assessments of DCF and possible TPs derived from data from the literature were performed, based on a serial chromatographic separation with reversed-phase liquid chromatographyfollowed by hydophilic interaction liquid chromatography (RPLC-HILIC system) coupled to ESI-TOF mass spectrometry. The application of the BDD electrode resulted in the complete removal of DCF in deionized water, drinking water and wastewater effluents spiked with DCF. As a function of the applied current density, a variety of TPs appeared, including early stage products, structures after ring opening and highly oxidized small molecules. Both the complexity of the water matrix and the electrode settings had a noticeable influence on the treatment process’s efficacy. In order to achieve effective removal of the target compound under economic conditions, and at the same time minimize by-product formation, it is recommended to operate the electrode at a moderate current density and reduce the extent of the treatment.


Sign in / Sign up

Export Citation Format

Share Document