Mineralization of organics in hazardous waste sulfuric acid by natural manganese oxide ore and a combined MnO2/activated carbon treatment to produce qualified manganese sulfate

2019 ◽  
Vol 366 ◽  
pp. 466-474 ◽  
Author(s):  
Xiunan Cai ◽  
Fang Shen ◽  
Yanjuan Zhang ◽  
Huayu Hu ◽  
Zuqiang Huang ◽  
...  
1973 ◽  
Vol 8 (1) ◽  
pp. 110-121
Author(s):  
A. Netzer ◽  
J.D. Norman

Abstract The merits of activated carbon for removal of organic compounds from wastewater have been well documented in the literature. On the other hand there is a lack of published data on the use of activated carbon for the removal of trace metals from wastewater. Experiments were designed to assess the possibility that activated carbon treatment would remove aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, silver and zinc from wastewater. All metals studied were tested over the pH range 3-11. Greater than 99.5% removal was achieved by pH adjustment and activated carbon treatment for most of the metals tested.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1731
Author(s):  
Chih-Chung Lai ◽  
Feng-Hao Hsu ◽  
Su-Yang Hsu ◽  
Ming-Jay Deng ◽  
Kueih-Tzu Lu ◽  
...  

The specific energy of an aqueous carbon supercapacitor is generally small, resulting mainly from a narrow potential window of aqueous electrolytes. Here, we introduced agarose, an ecologically compatible polymer, as a novel binder to fabricate an activated carbon supercapacitor, enabling a wider potential window attributed to a high overpotential of the hydrogen-evolution reaction (HER) of agarose-bound activated carbons in sulfuric acid. Assembled symmetric aqueous cells can be galvanostatically cycled up to 1.8 V, attaining an enhanced energy density of 13.5 W h/kg (9.5 µW h/cm2) at 450 W/kg (315 µW/cm2). Furthermore, a great cycling behavior was obtained, with a 94.2% retention of capacitance after 10,000 cycles at 2 A/g. This work might guide the design of an alternative material for high-energy aqueous supercapacitors.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 119
Author(s):  
Vasiliki Summerson ◽  
Claudia Gonzalez Viejo ◽  
Damir D. Torrico ◽  
Alexis Pang ◽  
Sigfredo Fuentes

The incidence and intensity of bushfires is increasing due to climate change, resulting in a greater risk of smoke taint development in wine. In this study, smoke-tainted and non-smoke-tainted wines were subjected to treatments using activated carbon with/without the addition of a cleaving enzyme treatment to hydrolyze glycoconjugates. Chemical measurements and volatile aroma compounds were assessed for each treatment, with the two smoke taint amelioration treatments exhibiting lower mean values for volatile aroma compounds exhibiting positive ‘fruit’ aromas. Furthermore, a low-cost electronic nose (e-nose) was used to assess the wines. A machine learning model based on artificial neural networks (ANN) was developed using the e-nose outputs from the unsmoked control wine, unsmoked wine with activated carbon treatment, unsmoked wine with a cleaving enzyme plus activated carbon treatment, and smoke-tainted control wine samples as inputs to classify the wines according to the smoke taint amelioration treatment. The model displayed a high overall accuracy of 98% in classifying the e-nose readings, illustrating it may be a rapid, cost-effective tool for winemakers to assess the effectiveness of smoke taint amelioration treatment by activated carbon with/without the use of a cleaving enzyme. Furthermore, the use of a cleaving enzyme coupled with activated carbon was found to be effective in ameliorating smoke taint in wine and may help delay the resurgence of smoke aromas in wine following the aging and hydrolysis of glycoconjugates.


2012 ◽  
Vol 46 (14) ◽  
pp. 7905-7912 ◽  
Author(s):  
Eric A. Morris ◽  
Donald W. Kirk ◽  
Charles Q. Jia ◽  
Kazuki Morita

2019 ◽  
Vol 210 ◽  
pp. 630-637 ◽  
Author(s):  
Seiko Jose ◽  
Leena Mishra ◽  
Sayandeep Debnath ◽  
Sourav Pal ◽  
Prabhat K. Munda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document