Progress and Prospects in Mitigation of Landfill Leachate Pollution: Risk, Pollution Potential, Treatment and Challenges

2021 ◽  
pp. 126627
Author(s):  
W.M.P.C. Wijekoon ◽  
Pabasari Arundathi Koliyabandara ◽  
Asitha Cooray ◽  
Su Shiung Lam ◽  
B.C.L. Athapattu ◽  
...  
2017 ◽  
Vol 17 (16) ◽  
pp. 10109-10123 ◽  
Author(s):  
Zhenyu Han ◽  
Botao Zhou ◽  
Ying Xu ◽  
Jia Wu ◽  
Ying Shi

Abstract. Based on the dynamic downscaling by the regional climate model RegCM4 from three CMIP5 global models under the historical and the RCP4.5 simulations, this article evaluated the performance of the RegCM4 downscaling simulations on the air environment carrying capacity (AEC) and weak ventilation days (WVDs) in China, which are applied to measure haze pollution potential. Their changes during the middle and the end of the 21st century were also projected. The evaluations show that the RegCM4 downscaling simulations can generally capture the observed features of the AEC and WVD distributions over the period 1986–2005. The projections indicate that the annual AEC tends to decrease and the annual WVDs tend to increase over almost the whole country except central China, concurrent with greater change by the late 21st century than by the middle of the 21st century. It suggests that annual haze pollution potential would be enlarged under the RCP4.5 scenario compared to the present. For seasonal change in the four main economic zones of China, it is projected consistently that there would be a higher probability of haze pollution risk over the Beijing–Tianjin–Hebei (BTH) region and the Yangtze River Delta (YRD) region in winter and over the Pearl River Delta (PRD) region in spring and summer in the context of the warming scenario. Over Northeast China (NEC), future climate change might reduce the AEC or increase the WVDs throughout the whole year, which favours the occurrence of haze pollution and thus the haze pollution risk would be aggravated. The relative contribution of different components related to the AEC change further indicates that changes in the boundary layer depth and the wind speed play leading roles in the AEC change over the BTH and NEC regions. In addition to those two factors, the precipitation change also exerts important impacts on the AEC change over the YRD and PRD zones.


2017 ◽  
Author(s):  
Zhenyu Han ◽  
Botao Zhou ◽  
Ying Xu ◽  
Jia Wu ◽  
Ying Shi

Abstract. Based on the dynamic downscaling by the regional climate model RegCM4 from three CMIP5 global models under the historical and the RCP4.5 simulations, this article evaluated the performance of the RegCM4 downscaling simulations on the air environment carrying capacity (AEC) and weak ventilation days (WVD) in China, which are applied to measure haze pollution potential. Their changes during the middle and the end of the 21st century were also projected. The evaluations show that the RegCM4 downscaling simulations can generally capture the observed features of the AEC and WVD distributions over the period 1986–2005. The projections indicate that the annual AEC tends to decrease and the annual WVD tends to increase almost over the whole country except central China, concurrent with greater change by the late of the 21st century than by the middle of the 21st century. It suggests that annual haze pollution potential would be enlarged under the RCP4.5 scenario as compared to the present. For seasonal change in the four main economic zones of China, it is projected consistently that there would be a higher probability of haze pollution risk over the Beijing-Tianjin-Hebei (BTH) region and the Yangtze River Delta (YRD) region in winter and over the Pearl River Delta (PRD) zone in spring and summer in the context of the warming scenario. Over Northeast China (NEC), future climate change might reduce the AEC or increase the WVD throughout the whole year, which favors the occurrence of haze pollution and thus the haze pollution risk would be aggravated. Relative contribution of different components related to the AEC change further indicates that changes of the boundary layer depth and the wind speed play the leading roles in the AEC change over the BTH and NEC regions. In addition to those two factors, the precipitation change also exerts dominant impacts on the ACE change over the YRD and PRD zones.


2014 ◽  
Vol 4 (3) ◽  
Author(s):  
Abdulla Al-Rawabdeh ◽  
Nadhir Al-Ansari ◽  
Ahmed Al-Taani ◽  
Fadi Al-Khateeb ◽  
Sven Knutsson

AbstractAmman-Zerqa Basin (AZB) is the second largest groundwater basin in Jordan with the highest abstraction rate, where more than 28% of total abstractions in Jordan come from this basin. In view of the extensive reliance on this basin, contamination of AZB groundwater became an alarming issue. This paper develops a Modified DRASTIC model by combining the generic DRASTIC model with land use activities and lineament density for the study area with a new model map that evaluates pollution potential of groundwater resources in AZB to various types of pollution. It involves the comparison of modified DRASTIC model that integrates nitrate loading along with other DRASTIC parameters. In addition, parameters to account for differences in land use and lineaments density were added to the DRASTIC model to reflect their influences on groundwater pollution potential. The DRASTIC model showed only 0.08% (3 km2) of the AZB is situated in the high vulnerability area and about 30% of the basin is located in the moderately vulnerable zone (mainly in central basin). After modifying the DRASTIC to account for lineament density, about 87% of the area was classified as having low pollution potential and no vulnerability class accounts for about 5.01% of the AZB area. The moderately susceptible zone covers 7.83% of the basin’s total area and the high vulnerability area constitutes 0.13%. The vulnerability map based on land use revealed that about 71% of the study area has low pollution potential and no vulnerability area accounts for about 0.55%, whereas moderate pollution potential zone covers an area of 28.35% and the high vulnerability class constitutes 0.11% of AZB. The final DRASTIC model which combined all DRASTIC models shows that slightly more than 89% of the study area falls under low pollution risk and about 6% is considered areas with no vulnerability. The moderate pollution risk potential covers an area of about 4% of AZB and the high vulnerability class constitutes 0.21% of the basin. The results also showed that an area of about 1761 km2 of bare soils is of low vulnerability, whereas about 28 km2 is moderately vulnerable. For agriculture and the urban sector, approximately 1472 km2 are located within the low vulnerability zone and about 144 km2 are moderately vulnerable, which together account for about 8% of the total agriculture and urban area. These areas are contaminated with human activities, particularly from the agriculture. Management of land use must be considered when changing human or agricultural activity patterns in the study area, to reduce groundwater vulnerability in the basin. The results also showed that the wells with the highest nitrate levels (81–107 mg/l) were located in high vulnerable areas and are attributed to leakage from old sewage water.


2020 ◽  
Vol 3 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Russel J Reiter ◽  
Qiang Ma ◽  
Ramaswamy Sharma

This review summarizes published reports on the utility of melatonin as a treatment for virus-mediated diseases. Of special note are the data related to the role of melatonin in influencing Ebola virus disease. This infection and deadly condition has no effective treatment and the published works documenting the ability of melatonin to attenuate the severity of viral infections generally and Ebola infection specifically are considered. The capacity of melatonin to prevent one of the major complications of an Ebola infection, i.e., the hemorrhagic shock syndrome, which often contributes to the high mortality rate, is noteworthy. Considering the high safety profile of melatonin, the fact that it is easily produced, inexpensive and can be self-administered makes it an attractive potential treatment for Ebola virus pathology.  


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 233-LB ◽  
Author(s):  
KENT GRINDSTAFF ◽  
REMI MAGNAN ◽  
ROBIN SHANG ◽  
EMILY STENGER ◽  
JENNA S. HOLLAND ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document