Hydroclimatology of the North American Monsoon region in northwest Mexico

2006 ◽  
Vol 316 (1-4) ◽  
pp. 53-70 ◽  
Author(s):  
David J. Gochis ◽  
Luis Brito-Castillo ◽  
W. James Shuttleworth
2008 ◽  
Vol 35 (22) ◽  
Author(s):  
Enrique R. Vivoni ◽  
Hernan A. Moreno ◽  
Giuseppe Mascaro ◽  
Julio C. Rodriguez ◽  
Christopher J. Watts ◽  
...  

2016 ◽  
Vol 29 (17) ◽  
pp. 6037-6064 ◽  
Author(s):  
Timothy M. Lahmers ◽  
Christopher L. Castro ◽  
David K. Adams ◽  
Yolande L. Serra ◽  
John J. Brost ◽  
...  

Abstract Transient inverted troughs (IVs) are a trigger for severe weather during the North American monsoon (NAM) in the southwest contiguous United States (CONUS) and northwest Mexico. These upper-tropospheric disturbances enhance the synoptic-scale and mesoscale environment for organized convection, increasing the chances for microbursts, straight-line winds, blowing dust, and flash flooding. This work considers changes in the track density climatology of IVs between 1951 and 2010. IVs are tracked as potential vorticity (PV) anomalies on the 250-hPa surface from a regional climate model that dynamically downscales the NCEP–NCAR Reanalysis 1. Late in the NAM season, a significant increase in IV track density over the 60-yr period is observed over Southern California and western Arizona, coupled with a slight decrease over northwest Mexico. Changes in precipitation are evaluated on days when an IV is observed and days without an IV, using high-resolution model-simulated precipitation estimates and CPC gridded precipitation observations. Because of changes in the spatial distribution of IVs during the 1951–2010 analysis period, which are associated with a strengthening of the monsoon ridge, it is suggested that IVs have played a lesser role in the initiation and organization of monsoon convection in the southwest CONUS during recent warm seasons.


Sign in / Sign up

Export Citation Format

Share Document