radiation parameterizations
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 5)

H-INDEX

18
(FIVE YEARS 1)

Climate ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 77
Author(s):  
Hoa Vo Van ◽  
Tien Du Duc ◽  
Hung Mai Khanh ◽  
Lars Robert Hole ◽  
Duc Tran Anh ◽  
...  

This study verified the seasonal six-month forecasts for winter temperatures for northern Vietnam in 1998–2018 using a regional climate model (RegCM4) with the boundary conditions of the climate forecast system Version 2 (CFSv2) from the National Centers for Environmental Prediction (NCEP). First, different physical schemes (land-surface process, cumulus, and radiation parameterizations) in RegCM4 were applied to generate 12 single forecasts. Second, the simple ensemble forecasts were generated through the combinations of those different physical formulations. Three subclimate regions (R1, R2, R3) of northern Vietnam were separately tested with surface observations and a reanalysis dataset (Japanese 55-year reanalysis (JRA55)). The highest sensitivity to the mean monthly temperature forecasts was shown by the land-surface parameterizations (the biosphere−atmosphere transfer scheme (BATS) and community land model version 4.5 (CLM)). The BATS forecast groups tended to provide forecasts with lower temperatures than the actual observations, while the CLM forecast groups tended to overestimate the temperatures. The forecast errors from single forecasts could be clearly reduced with ensemble mean forecasts, but ensemble spreads were less than those root-mean-square errors (RMSEs). This indicated that the ensemble forecast was underdispersed and that the direct forecast from RegCM4 needed more postprocessing.


2020 ◽  
Author(s):  
Josep Calbó ◽  
Babak Jahani ◽  
Josep-Abel González

<p>The conditions between cloudy and cloud-free air, named “Transition (or twilight) Zone”, are a major source of uncertainty in the climate and meteorological studies. The transition zone involves microphysical and radiative characteristics which lay on the border between those corresponding to a pure cloud and those corresponding to pure atmospheric aerosols. Several studies show that a notable proportion of cloudless sky at any time may correspond to this phase. However, as the information available about radiative effects of this phase is still very limited in most meteorological and climate studies the condition of sky is assumed to be either cloudy (fully developed cloud) or cloud-free (dry aerosol), neglecting the transition zone. This implies that these models consider the area/layer corresponding to the transition zone as either cloud or aerosol. The authors of the current communication have shown in a previous work that there are substantial uncertainties associated with modeling the surface shortwave irradiances under this assumption [Jahani et al. (2019) JGR: Atmospheres, 124. https://doi.org/10.1029/2019JD031064]. The present communication aims to show the uncertainties in modeling the heating rate in the atmosphere (due to shortwave solar radiation) driven from different treatments of the transition zone. For this purpose, the relatively detailed shortwave radiation parameterizations included in the Weather Research and Forecasting model (WRF) version 4.0, which allow users to consider different treatments of aerosols and clouds (RRTMG, NewGoddard and FLG), were isolated from the whole model. These parameterizations were then utilized to perform a number of simulations under ideal “cloud” and “aerosol” modes, for different values of (i) cloud optical thicknesses resulting from different sizes of ice crystals or liquid droplets, cloud height, mixing ratios; and (ii) different aerosol optical thicknesses combined with various aerosol types. The optical thickness under both aerosol and cloud modes was considered to vary between 0.01 and 2.00. The differences in the resulting atmosphere column averaged heating rate were analyzed. The results showed (i) the simplified assumption about the state of the sky leads to a large difference among the atmospheric shortwave heating rate, (ii) magnitude of these uncertainties is higher when parameterizations which cope with the Radiative Transfer Equation in more detail (RRTMG and NewGoddard) are used.</p>


2016 ◽  
Vol 29 (14) ◽  
pp. 5299-5316 ◽  
Author(s):  
Anthony J. Baran ◽  
Peter Hill ◽  
David Walters ◽  
Steven C. Hardiman ◽  
Kalli Furtado ◽  
...  

Abstract The impact of two different coupled cirrus microphysics–radiation parameterizations on the zonally averaged temperature and humidity biases in the tropical tropopause layer (TTL) of a Met Office climate model configuration is assessed. One parameterization is based on a linear coupling between a model prognostic variable, the ice mass mixing ratio qi, and the integral optical properties. The second is based on the integral optical properties being parameterized as functions of qi and temperature, Tc, where the mass coefficients (i.e., scattering and extinction) are parameterized as nonlinear functions of the ratio between qi and Tc. The cirrus microphysics parameterization is based on a moment estimation parameterization of the particle size distribution (PSD), which relates the mass moment (i.e., second moment if mass is proportional to size raised to the power of 2) of the PSD to all other PSD moments through the magnitude of the second moment and Tc. This same microphysics PSD parameterization is applied to calculate the integral optical properties used in both radiation parameterizations and, thus, ensures PSD and mass consistency between the cirrus microphysics and radiation schemes. In this paper, the temperature-non-dependent and temperature-dependent parameterizations are shown to increase and decrease the zonally averaged temperature biases in the TTL by about 1 K, respectively. The temperature-dependent radiation parameterization is further demonstrated to have a positive impact on the specific humidity biases in the TTL, as well as decreasing the shortwave and longwave biases in the cloudy radiative effect. The temperature-dependent radiation parameterization is shown to be more consistent with TTL and global radiation observations.


2016 ◽  
Vol 55 (3) ◽  
pp. 595-619 ◽  
Author(s):  
Paul A. Gregory ◽  
Lawrie J. Rikus

AbstractForecast solar exposure fields produced by the Australian Bureau of Meteorology’s updated numerical weather prediction systems were validated against multiple sites for the 2012 calendar year. The updated systems are denoted as the Australian Community Climate and Earth-System Simulator (ACCESS) model and became operational in August 2010. The systems are based on the Met Office’s Unified Model and feature improved assimilation methods and radiation parameterizations that were expected to greatly improve forecasts of solar exposure several days in advance. In this study forecasts of global, direct, and diffuse exposure from the mesoscale model ACCESS-A were validated. Statistics were generated for all-sky and clear-sky conditions. Additionally, evaluation of the model’s forecast exposure through single-layer low clouds was conducted. Results show an improvement in global forecasts relative to the older operational model; however, forecasts of diffuse and direct exposure still suffer from large biases. These can be attributed to the choices of the asymmetry factor used in the two-stream approximation for incoming radiation, which determines scattering of the direct beam through clouds.


2016 ◽  
Vol 73 (4) ◽  
pp. 1507-1527 ◽  
Author(s):  
Jason M. Keeler ◽  
Brian F. Jewett ◽  
Robert M. Rauber ◽  
Greg M. McFarquhar ◽  
Roy M. Rasmussen ◽  
...  

Abstract This paper assesses the influence of radiative forcing and latent heating on the development and maintenance of cloud-top generating cells (GCs) in high-resolution idealized Weather Research and Forecasting Model simulations with initial conditions representative of the vertical structure of a cyclone observed during the Profiling of Winter Storms campaign. Simulated GC kinematics, structure, and ice mass are shown to compare well quantitatively with Wyoming Cloud Radar, cloud probe, and other observations. Sensitivity to radiative forcing was assessed in simulations with longwave-only (nighttime), longwave-and-shortwave (daytime), and no-radiation parameterizations. The domain-averaged longwave cooling rate exceeded 0.50 K h−1 near cloud top, with maxima greater than 2.00 K h−1 atop GCs. Shortwave warming was weaker by comparison, with domain-averaged values of 0.10–0.20 K h−1 and maxima of 0.50 K h−1 atop GCs. The stabilizing influence of cloud-top shortwave warming was evident in the daytime simulation’s vertical velocity spectrum, with 1% of the updrafts in the 6.0–8.0-km layer exceeding 1.20 m s−1, compared to 1.80 m s−1 for the nighttime simulation. GCs regenerate in simulations with radiative forcing after the initial instability is released but do not persist when radiation is not parameterized, demonstrating that radiative forcing is critical to GC maintenance under the thermodynamic and vertical wind shear conditions in this cyclone. GCs are characterized by high ice supersaturation (RHice > 150%) and latent heating rates frequently in excess of 2.00 K h−1 collocated with vertical velocity maxima. Ice precipitation mixing ratio maxima of greater than 0.15 g kg−1 were common within GCs in the daytime and nighttime simulations.


2016 ◽  
Vol 86 ◽  
pp. 831-840 ◽  
Author(s):  
Melina-Maria Zempila ◽  
Theodore M. Giannaros ◽  
Alkiviadis Bais ◽  
Dimitris Melas ◽  
Andreas Kazantzidis

Sign in / Sign up

Export Citation Format

Share Document