Sensitivity of the hydrological response to the variability of rainfall fields and soils for the Gard 2002 flash-flood event

2010 ◽  
Vol 394 (1-2) ◽  
pp. 134-147 ◽  
Author(s):  
Sandrine Anquetin ◽  
Isabelle Braud ◽  
Olivier Vannier ◽  
Pierre Viallet ◽  
Brice Boudevillain ◽  
...  
2007 ◽  
Vol 8 (3) ◽  
pp. 282-303 ◽  
Author(s):  
A. Amengual ◽  
R. Romero ◽  
M. Gómez ◽  
A. Martín ◽  
S. Alonso

Abstract During the early morning of 10 June 2000, the Catalonia region was affected by a hazardous convective rainfall episode that produced a large increase on flow regimes in many internal catchments of the region. The present modeling study is focused upon the Llobregat basin, the biggest internal catchment with a drainage area of 5040 km2. The first objective of the study is the characterization of the watershed hydrological response to this flash-flood event based on rain gauge data and the Hydrologic Engineering Center’s Hydrological Modeling System (HEC-HMS) runoff model. The HEC-HMS model has been calibrated using five episodes of similar torrential characteristics, and the effects of the spatial segmentation of the basin and of the temporal scale of the input rainfall field have been examined. These kinds of episodes present short recurrence intervals in Mediterranean Spain, and the use of mesoscale forecast driven runoff simulation systems for increasing the lead times of the emergency management procedures is a valuable issue to explore. The second objective uses NCEP and ECMWF analyses to initialize the nonhydrostatic fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) in order to simulate the 10 June 2000 flash-flood episode with appropriate space and time scales to force the runoff model. The final objective analyzes the sensitivity of the catchment’s response to the spatial and temporal uncertainty of the rainfall pattern based on an ensemble of perturbed MM5 simulations. MM5 perturbations are introduced through small shifts and changes in intensity of the precursor upper-level synoptic-scale trough. Main results indicate that 1) an optimum configuration of the runoff model can be clearly defined that best adjusts the simulated basin’s hydrological response to observed peak discharges, their timing, and total volume; 2) the MM5-control driven runoff simulation shows a reasonable reproduction of the observed discharge at the basin’s outlet and appears to be a suitable tool for the hydrometeorological forecasting of flash floods in the Llobregat basin as a whole; and 3) the ensemble of perturbed runoff simulations does not exhibit any relevant degradation of the forecast skill, and some of the members even outperform the control experiment at different stream gauge locations. That is, the catchment is relatively insensitive to rainfall forecast errors of a few tenths of kilometers and no more than 1–2 h.


2017 ◽  
Vol 18 (4) ◽  
pp. 1143-1166 ◽  
Author(s):  
A. Amengual ◽  
D. S. Carrió ◽  
G. Ravazzani ◽  
V. Homar

Abstract On 12 October 2007, several flash floods affected the Valencia region, eastern Spain, with devastating impacts in terms of human, social, and economic losses. An enhanced modeling and forecasting of these extremes, which can provide a tangible basis for flood early warning procedures and mitigation measures over the Mediterranean, is one of the fundamental motivations of the international Hydrological Cycle in the Mediterranean Experiment (HyMeX) program. The predictability bounds set by multiple sources of hydrological and meteorological uncertainty require their explicit representation in hydrometeorological forecasting systems. By including local convective precipitation systems, short-range ensemble prediction systems (SREPSs) provide a state-of-the-art framework to generate quantitative discharge forecasts and to cope with different sources of external-scale (i.e., external to the hydrological system) uncertainties. The performance of three distinct hydrological ensemble prediction systems (HEPSs) for the small-sized Serpis River basin is examined as a support tool for early warning and mitigation strategies. To this end, the Flash-Flood Event–Based Spatially Distributed Rainfall–Runoff Transformation–Water Balance (FEST-WB) model is driven by ground stations to examine the hydrological response of this semiarid and karstic catchment to heavy rains. The use of a multisite and novel calibration approach for the FEST-WB parameters is necessary to cope with the high nonlinearities emerging from the rainfall–runoff transformation and heterogeneities in the basin response. After calibration, FEST-WB reproduces with remarkable accuracy the hydrological response to intense precipitation and, in particular, the 12 October 2007 flash flood. Next, the flood predictability challenge is focused on quantitative precipitation forecasts (QPFs). In this regard, three SREPS generation strategies using the WRF Model are analyzed. On the one side, two SREPSs accounting for 1) uncertainties in the initial conditions (ICs) and lateral boundary conditions (LBCs) and 2) physical parameterizations are evaluated. An ensemble Kalman filter (EnKF) is also designed to test the ability of ensemble data assimilation methods to represent key mesoscale uncertainties from both IC and subscale processes. Results indicate that accounting for diversity in the physical parameterization schemes provides the best probabilistic high-resolution QPFs for this particular flash flood event. For low to moderate precipitation rates, EnKF and pure multiple physics approaches render undistinguishable accuracy for the test situation at larger scales. However, only the multiple physics QPFs properly drive the HEPS to render the most accurate flood warning signals. That is, extreme precipitation values produced by these convective-scale precipitation systems anchored by complex orography are better forecast when accounting just for uncertainties in the physical parameterizations. These findings contribute to the identification of ensemble strategies better targeted to the most relevant sources of uncertainty before flash flood situations over small catchments.


2021 ◽  
Author(s):  
Carol Tamez Melendez ◽  
Judith Meyer ◽  
Audrey Douinot ◽  
Günter Blöschl ◽  
Laurent Pfister

<p>Flash flood events have caused massive damage on multiple occasions between 2016 and 2018 in several catchments in eastern Luxembourg. This region is very well known for being exposed to large-scale winter floods, commonly triggered by long-lasting advective precipitation events related to westerly atmospheric fluxes. However, flash floods - a truly exceptional phenomenon in this region - are have solely occurred in summer in response to intense convective precipitation events. Thus, because of the rare occurrence and local character of this type of events, the mechanisms eventually controlling a flash flood-type response of a catchment remains poorly understood.  </p><p>Here, we focus on four main objectives: i) the role that physiographic characteristics play on the spatial variability of pre-event hydrological states (as expressed via storage) across a set of 41 nested catchments located in the Sûre River basin (4,240 km<sup>2</sup>), Luxembourg, ii) the hydrological response to precipitation controlled by those pre-event hydrological states, iii) the responsivity (resistance) and elasticity (resilience) of the catchments to global change, and iv) the relation between water yields and the offsets from Budyko curve and its related energy limits.</p><p>The area of interest is not only characterised by a homogenous temperate oceanic climate but also by heterogeneous physiographical conditions and land use, which makes it ideal for this study. We used 8 years’ worth hydrological data (precipitation, discharge and potential evapotranspiration) to calculate the increments of the water balance and determine the maximum storage capacity and storage deficits. Second, we used the relationship between storage deficit and discharge to estimate total storage at a hypothetical nearly zero flow condition. Third, we compared the pre-hydrological states and event runoff ratios (Q/P) to the catchments’ physiographical conditions in order to link catchment’s sensitivity to storage metrics. We then assessed the responsivity and elasticity to climate and anthropogenic variations – as expressed through the PET/P and AET/P deviations from the Budyko curve and energy limits– for each individual catchment. Finally, we investigated the catchment’s area control on responsivity, elasticity, water yields and Budyko’s elements across our set of 41 nested catchments.</p>


2019 ◽  
Vol 132 (2) ◽  
pp. 181-201
Author(s):  
Jackson Hian-Wui Chang ◽  
S. S. K. Kong ◽  
Justin Sentian ◽  
Jedol Dayou ◽  
Fuei-Pien Chee

2016 ◽  
Vol 84 (2) ◽  
pp. 851-876 ◽  
Author(s):  
Liesbet Jacobs ◽  
Jan Maes ◽  
Kewan Mertens ◽  
John Sekajugo ◽  
Wim Thiery ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document