rwenzori mountains
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Author(s):  
John Sekajugo ◽  
Grace R Kagoro ◽  
Liesbet Jacobs ◽  
Clovis Kabaseke ◽  
Esther Namara ◽  
...  

<p>Accurate and complete inventory of natural hazard occurrence and their level of impact is a key first step to risk assessment, but it remains a challenge, especially for high frequency low impact events that rarely makes it to the news media. This challenge is even greater in rural areas of developing countries such as Uganda, where limited IT facilities prevent dissemination of information through social media. Here we report on a citizen-science initiative to monitor small-scale disasters (landslides and floods) occurring in the Rwenzori Mountains. A network of citizen (geo-)observers was established in February 2017 to collect temporally explicit geo-referenced information on eight different hazards and their impact using smartphone technology. Since then, over 500 hazard occurrences have been reported. However, such dataset needs to be assessed for its accuracy and potential biases before being used for scientific analysis. In this study, we evaluate the accuracy and completeness of the geo-observer-based disaster reports. First, systematic errors are reduced by peer reviewing the reports and implementing automatic tests to assess potential errors in detection and biases. Then, we compare the geo-observer-based records with two independent inventories collected through systematic field mapping and  satellite imagery mapping, focusing on landslide and flood events for the period between May 2019 and May 2020.  Results show over 95% of the geo-observer reports validated in the field were correctly identified and recorded less than 5 days after the occurrence (60% true positives, 1% false positives and 39% false negatives). For the satellite imagery mapping, 29% were true positives, 43% false positives and 28% false negatives. Geo-observers provide near real time disaster information on the location and level of impact, something difficult to achieve with systematic field and satellite imagery mapping. Depending on the topography of the area and the weather conditions, it can take several days to weeks before a cloud-free satellite image of a place can be obtained. The false negatives in the Geo-observer data are due to the tendency to report mainly occurrences along roads and rural foot paths since such occurrences are easily seen and accessed. Isolated small and inaccessible landslides are often not seen or reported to the Geo-observers. While satellite imagery mapping provides an opportunity to record disaster occurrences even in extremely inaccessible places, small landslides are often missed while shallow ones can easily be confused with freshly cleared vegetation for crop planting. Citizen science-based disaster reporting therefore not only provide the spatial occurrence of disasters but also the temporal and weather-related information, necessary for disaster risk analysis.</p>


2020 ◽  
Vol 552 ◽  
pp. 116593 ◽  
Author(s):  
Scott Jess ◽  
Daniel Koehn ◽  
Matthew Fox ◽  
Eva Enkelmann ◽  
Till Sachau ◽  
...  

Author(s):  
Anson W. Mackay ◽  
Rebecca Lee ◽  
James M. Russell

Abstract Rwenzori Mountains National Park, which straddles the border between the Democratic Republic of Congo and Uganda, has experienced rapid glacier loss since the beginning of the twentieth century, yet there has been little investigation of aquatic biodiversity change in the park. This study presents a paleolimnological analysis from Lake Mahoma (2990 m asl), which is situated in the bamboo-forest transition zone. Diatom and organic geochemistry data from a 39-cm-long sediment core with a basal age of c. 1715 CE were compared with new analyses of previously published data from Lakes Bujuku (3891 m asl) and Lower Kitandara (3989 m asl), in the alpine zone. Comparisons were made to determine if aquatic ecosystem changes exhibited similar inter-lake patterns over the past ~ 150 years of climate warming and glacial recession, or if only local change was apparent. The diatom flora of Lake Mahoma is acidophilous, dominated by Aulacoseira ikapoënsis since at least the mid eighteenth century. In recent decades, the obligate nitrogen-heterotroph Nitzschia palea increased in importance, concurrent with declining δ15Norg values. We suggest that these late twentieth century changes were linked to regional warming and increased thermal stratification of Lake Mahoma. Regional comparisons of the Rwenzori lakes were done using existing organic geochemistry records (total organic carbon, C/N and δ13Corg) and through diatom compositional turnover analyses, and categorisation of species into one of four diatom growth morphology traits, or guilds: tychoplanktonic, high-profile, low-profile and motile. Over the past 150 years, all three lakes showed unidirectional, compositional diatom turnover, indicating that deterministic processes had affected diatom communities. Declining turnover at each site is broadly mirrored by an increase in tychoplanktonic taxa, along with concomitant declines in high-profile diatoms at Lake Mahoma, and low-profile diatoms at Lake Bujuku, and at least for the past 60 years, at Lower Kitandara. The interplay between diatom guilds at all sites is mainly a consequence of competition for available resources. Sediment organic carbon at all sites comes from both autochthonous and allochthonous sources, the relative abundances of which are influenced by the time elapsed since lakes had glaciers in their catchment.


Author(s):  
Alice M. Doughty ◽  
Meredith A. Kelly ◽  
James M. Russell ◽  
Margaret S. Jackson ◽  
Brian M. Anderson ◽  
...  

2020 ◽  
Author(s):  
Alice Doughty ◽  
et al.

Explanation of the modeling methods, climate input data, and a comparison between glacierized sites in East Africa<br>


2020 ◽  
Author(s):  
Alice Doughty ◽  
et al.

Explanation of the modeling methods, climate input data, and a comparison between glacierized sites in East Africa<br>


2020 ◽  
Author(s):  
Margaret S. Jackson ◽  
Meredith A. Kelly ◽  
James M. Russell ◽  
Alice M. Doughty ◽  
Jennifer A. Howley ◽  
...  

Abstract. Tropical glaciers are retreating rapidly, threatening alpine ecosystems across the low latitudes. Understanding how tropical glaciers responded to past periods of warming is crucial for predicting and adapting to future climate change, yet relatively little is known about glacial fluctuations in tropical regions during the recent past (i.e., the Holocene Epoch). This is particularly true in the African tropics, where data constraining the timing and magnitude of Holocene glacial fluctuations in the region are sparse and where temperatures during the middle Holocene were perhaps as warm as or warmer than today. Here we present new beryllium-10 surface-exposure ages that constrain Holocene glacial extents in the equatorial Rwenzori Mountains, Uganda. These results document rapid Early Holocene (~11.7–8.2 ka) glacial retreat in two separate catchments and indicate that Late Holocene (~4.2 ka-present) deposits mark the greatest expansion of Rwenzori glaciers during the last ~11 ka. Holocene glacial fluctuations elsewhere in tropical Africa and in tropical South America are broadly similar to those in the Rwenzori, with most tropical glaciers retreating rapidly during the Early Holocene and remaining near or inboard of their Late Holocene positions through much of Holocene time. The similarity of Holocene glacial fluctuations across the tropics implies that low-latitude glaciers responded to a common forcing mechanism, most likely temperature. Although the drivers of Holocene temperature changes in the tropics remains enigmatic, these data help constrain the expression of tropical temperature changes in the low latitudes.


2020 ◽  
Vol 91 (6) ◽  
pp. 595-609
Author(s):  
Alicia M. Rich ◽  
Michael D. Wasserman ◽  
Kevin D. Hunt ◽  
Frederika A. Kaestle

We used mitochondrial DNA to examine gene flow in a region of western Uganda that has received little attention regarding chimpanzee population dynamics. The area is critical to gene flow between isolated Democratic Republic of Congo populations and the rest of East Africa. None of the chimpanzees in each of the 4 protected areas under consideration (Toro-Semliki Wildlife Reserve, Semuliki National Park, Rwenzori Mountains National Park and Itwara Central Forest Reserve) are fully habituated. Therefore, it is not clear whether one or more populations have historically used this fragmented landscape for (1) regular ranging and/or (2) infrequent dispersal. We incorporated the published sequences of the first hypervariable region of the D-loop of the mitochondrial genome from 3 previously sampled sites (<i>n</i> = 39) while also contributing the first extensive genetic sampling of chimpanzees in Toro-Semliki (<i>n</i> = 80). Our goal was to generate a historical baseline model of metapopulation dynamics in this region and determine which, if any, of these protected areas forms a fragmented landscape for a single chimpanzee population. According to a discriminant analysis of principal components, the haplotypes at Toro-Semliki form a central cluster, and Itwara is its nearest genetic neighbor. Rwenzori Mountains National Park is the most distant neighbor of all protected areas. We performed an analysis of molecular variance for 14 different population models that divided the samples from the 4 protected areas into 2, 3 or 4 populations. The best fit model included 3 populations: Toro-Semliki Wildlife Reserve and Itwara Forest Reserve comprised a single population; Semuliki National Park and Rwenzori Mountains National Park formed 2 additional separate populations (variance among = 9%, <i>p</i> = 0.014). The results indicated that some protected areas comprised distinctive populations, while others formed a fragmented landscape for a population’s ranging for foraging purposes. Therefore, the edges of a protected area do not always define a chimpanzee population. We propose a closer examination of those dynamics through renewed sampling. Advances in DNA extraction and next-generation sequencing will allow us to compare thousands of single nucleotide polymorphisms in the genomes of unhabituated chimpanzees living in each of these protected areas.


Sign in / Sign up

Export Citation Format

Share Document