Investigating the impact of leaf area index temporal variability on soil moisture predictions using remote sensing vegetation data

2015 ◽  
Vol 522 ◽  
pp. 274-284 ◽  
Author(s):  
Min Chen ◽  
Garry R. Willgoose ◽  
Patricia M. Saco
2021 ◽  
Vol 13 (8) ◽  
pp. 1427
Author(s):  
Kasturi Devi Kanniah ◽  
Chuen Siang Kang ◽  
Sahadev Sharma ◽  
A. Aldrie Amir

Mangrove is classified as an important ecosystem along the shorelines of tropical and subtropical landmasses, which are being degraded at an alarming rate despite numerous international treaties having been agreed. Iskandar Malaysia (IM) is a fast-growing economic region in southern Peninsular Malaysia, where three Ramsar Sites are located. Since the beginning of the 21st century (2000–2019), a total loss of 2907.29 ha of mangrove area has been estimated based on medium-high resolution remote sensing data. This corresponds to an annual loss rate of 1.12%, which is higher than the world mangrove depletion rate. The causes of mangrove loss were identified as land conversion to urban, plantations, and aquaculture activities, where large mangrove areas were shattered into many smaller patches. Fragmentation analysis over the mangrove area shows a reduction in the mean patch size (from 105 ha to 27 ha) and an increase in the number of mangrove patches (130 to 402), edge, and shape complexity, where smaller and isolated mangrove patches were found to be related to the rapid development of IM region. The Moderate Resolution Imaging Spectro-radiometer (MODIS) Leaf Area Index (LAI) and Gross Primary Productivity (GPP) products were used to inspect the impact of fragmentation on the mangrove ecosystem process. The mean LAI and GPP of mangrove areas that had not undergone any land cover changes over the years showed an increase from 3.03 to 3.55 (LAI) and 5.81 g C m−2 to 6.73 g C m−2 (GPP), highlighting the ability of the mangrove forest to assimilate CO2 when it is not disturbed. Similarly, GPP also increased over the gained areas (from 1.88 g C m−2 to 2.78 g C m−2). Meanwhile, areas that lost mangroves, but replaced them with oil palm, had decreased mean LAI from 2.99 to 2.62. In fragmented mangrove patches an increase in GPP was recorded, and this could be due to the smaller patches (<9 ha) and their edge effects where abundance of solar radiation along the edges of the patches may increase productivity. The impact on GPP due to fragmentation is found to rely on the type of land transformation and patch characteristics (size, edge, and shape complexity). The preservation of mangrove forests in a rapidly developing region such as IM is vital to ensure ecosystem, ecology, environment, and biodiversity conservation, in addition to providing economical revenue and supporting human activities.


Author(s):  
H.-w. Zhang ◽  
H.-l. Chen

The vegetation coverage is one of the important factors that restrict the accuracy of remote sensing retrieval of soil moisture. In order to effectively improve the accuracy of the remote sensing retrieval of soil moisture and to reduce the impact of vegetation coverage variation on the retrieval accuracy, the Leaf Area Index (LAI) is introduced to the Normalized Difference Water Index (NDWI) to greatly improve the accuracy of the soil moisture retrieval. In its application on the regional drought monitoring, the paper uses the relative LAI from two places which locate in the north and south of Henan Province respectively (Xin Xiang and Zhu Ma Dian) as indicators. It uses the days after turned-green stage to conduct difference value correction on the Relative Leaf Area Index (RLAL) of the entire province, so as to acquire the distribution of RLAI of the province’s wheat producing area. After this, the local remote sensing NDWI will be Modified (MNDWI = NDWI ×RLAI ) to acquire the soil moisture distribution status of the entire province’s wheat producing area. The result shows that, the Modified Normalized Difference Water Index of LAI which based on the days after turned-green stage can improve the real time retrieval accuracy of soil moisture under different vegetation coverage.


2014 ◽  
Vol 18 (1) ◽  
pp. 173-192 ◽  
Author(s):  
A. L. Barbu ◽  
J.-C. Calvet ◽  
J.-F. Mahfouf ◽  
S. Lafont

Abstract. The land monitoring service of the European Copernicus programme has developed a set of satellite-based biogeophysical products, including surface soil moisture (SSM) and leaf area index (LAI). This study investigates the impact of joint assimilation of remotely sensed SSM derived from Advanced Scatterometer (ASCAT) backscatter data and the Copernicus Global Land GEOV1 satellite-based LAI product into the the vegetation growth version of the Interactions between Soil Biosphere Atmosphere (ISBA-A-gs) land surface model within the the externalised surface model (SURFEX) modelling platform of Météo-France. The ASCAT data were bias corrected with respect to the model climatology by using a seasonal-based CDF (Cumulative Distribution Function) matching technique. A multivariate multi-scale land data assimilation system (LDAS) based on the extended Kalman Filter (EKF) is used for monitoring the soil moisture, terrestrial vegetation, surface carbon and energy fluxes across the domain of France at a spatial resolution of 8 km. Each model grid box is divided into a number of land covers, each having its own set of prognostic variables. The filter algorithm is designed to provide a distinct analysis for each land cover while using one observation per grid box. The updated values are aggregated by computing a weighted average. In this study, it is demonstrated that the assimilation scheme works effectively within the ISBA-A-gs model over a four-year period (2008–2011). The EKF is able to extract useful information from the data signal at the grid scale and distribute the root-zone soil moisture and LAI increments throughout the mosaic structure of the model. The impact of the assimilation on the vegetation phenology and on the water and carbon fluxes varies from one season to another. The spring drought of 2011 is an interesting case study of the potential of the assimilation to improve drought monitoring. A comparison between simulated and in situ soil moisture gathered at the twelve SMOSMANIA (Soil Moisture Observing System–Meteorological Automatic Network Integrated Application) stations shows improved anomaly correlations for eight stations.


2013 ◽  
Vol 10 (7) ◽  
pp. 9057-9103 ◽  
Author(s):  
A. L. Barbu ◽  
J.-C. Calvet ◽  
J.-F. Mahfouf ◽  
S. Lafont

Abstract. The land monitoring service of the European Copernicus programme has developed a set of satellite-based biogeophysical products, including surface soil moisture (SSM) and leaf area index (LAI). This study investigates the impact of joint assimilation of remotely sensed SSM derived from ASCAT backscatter data and the GEOV1 satellite-based LAI into the ISBA-A-gs land surface model within the SURFEX modelling platform of Meteo-France. The ASCAT data were bias corrected with respect to the model climatology by using a seasonal-based CDF (Cumulative Distribution Function) matching technique. A multivariate multi-scale land data assimilation system (LDAS) based on the Extended Kalman Filter (EKF) is used for monitoring the soil moisture, terrestrial vegetation, surface carbon and energy fluxes across the France domain at a spatial resolution of 8 km. Each model grid box is divided in a number of land covers, each having its own set of prognostic variables. The filter algorithm is designed to provide a distinct analysis for each land cover while using one observation per grid box. The updated values are aggregated by computing a weighted average. In this study, it is demonstrated that the assimilation scheme works effectively within the ISBA-A-gs model over a four-year period (2008–2011). The EKF is able to extract useful information from the data signal at the grid scale and to distribute the root-zone soil moisture and LAI increments among the mosaic structure of the model. The impact of the assimilation on the vegetation phenology and on the water and carbon fluxes varies from one season to another. The spring drought of 2011 is an interesting case study showing the potential of the assimilation to improve drought monitoring. A comparison between simulated and in situ soil moisture gathered at the twelve SMOSMANIA stations shows improved anomaly correlations for eight stations.


2007 ◽  
Vol 8 (3) ◽  
pp. 534-550 ◽  
Author(s):  
Yeonjoo Kim ◽  
Guiling Wang

Abstract Previous studies support a positive soil moisture–precipitation feedback over a major fraction of North America; that is, initial soil moisture anomalies lead to precipitation anomalies of the same sign. To investigate how vegetation feedback modifies the sensitivity of precipitation to initial soil moisture conditions over North America, a series of ensemble simulations are carried out using a modified version of the coupled Community Atmosphere Model–Community Land Model (CAM–CLM). The modified CLM includes a predictive vegetation phenology scheme so that the coupled model can represent interactions between soil moisture, vegetation, and precipitation at the seasonal time scale. The focus of this study is on how the impact of vegetation feedback varies with the timing and direction of initial soil moisture anomalies. During summer, wet soil moisture anomalies lead to increase in leaf area index and, consequently, increase in evapotranspiration and surface heating. Such increases tend to favor precipitation. Therefore, under wet summer soil moisture anomalies, the soil moisture–induced precipitation increase is reinforced when predictive phenology is included. That is, the vegetation feedback to precipitation is positive. The response of vegetation to dry soil moisture anomalies in the summer months, however, is not significant due probably to a dry bias in the model, so the resulting vegetation feedback on precipitation is minimal. To soil moisture anomalies in spring, the leaf area index (LAI) response is delayed since LAI is still limited by cold temperature at that time of the year. During the summer following wet spring soil moisture anomalies, vegetation feedback is negative; that is, it tends to suppress the response of precipitation through the depletion of soil moisture by vegetation.


2018 ◽  
Vol 10 (5) ◽  
pp. 763 ◽  
Author(s):  
Manuel Campos-Taberner ◽  
Francisco García-Haro ◽  
Lorenzo Busetto ◽  
Luigi Ranghetti ◽  
Beatriz Martínez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document