Evaluating a sensor setup with respect to near-surface soil water monitoring and determination of in-situ water retention functions

2017 ◽  
Vol 549 ◽  
pp. 301-312 ◽  
Author(s):  
R. Nolz ◽  
G. Kammerer
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yan Gao ◽  
Kai Chang ◽  
Xuguang Xing ◽  
Jiaping Liang ◽  
Nian He ◽  
...  

PurposeTraditional laboratory measurements of soil water diffusivity (D) and soil water retention curve (SWRC) are always time-consuming and labor-intensive. Therefore, this paper aims to present a simple and robust test method for determining D and SWRC without reducing accuracy.Design/methodology/approachIn this study, a D model of unsaturated soil was established based on Gardner–Russo model and then a combination of Gardner–Russo model with one-dimensional horizontal absorption method to obtain n and a parameters of Gardner–Russo model. One-dimensional horizontal absorption experiments on loam, silt loam and sandy clay loam were conducted to obtain the relationships between measured infiltration rate and cumulative infiltration with wetting front distance. Based on the obtained relationships, the measured infiltration data from the one-dimensional horizontal absorption tests were used to calculate n and a parameters and further constructing D and SWRC.FindingsBoth the calculated D and SWRC inversed from the infiltration data were in good agreement with the measured ones that obtained from the traditional horizontal absorption method and the centrifuge method, respectively. Error analysis indicated that only the infiltration data are enough to reliably synchronously determine D and SWRC.Originality/valueA simple and robust method is proposed for synchronous determination of soil water diffusivity and water retention curve.


2008 ◽  
Vol 12 (6) ◽  
pp. 1323-1337 ◽  
Author(s):  
C. Albergel ◽  
C. Rüdiger ◽  
T. Pellarin ◽  
J.-C. Calvet ◽  
N. Fritz ◽  
...  

Abstract. A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content), the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.


2015 ◽  
Vol 19 (12) ◽  
pp. 4831-4844 ◽  
Author(s):  
C. Draper ◽  
R. Reichle

Abstract. A 9 year record of Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) soil moisture retrievals are assimilated into the Catchment land surface model at four locations in the US. The assimilation is evaluated using the unbiased mean square error (ubMSE) relative to watershed-scale in situ observations, with the ubMSE separated into contributions from the subseasonal (SMshort), mean seasonal (SMseas), and inter-annual (SMlong) soil moisture dynamics. For near-surface soil moisture, the average ubMSE for Catchment without assimilation was (1.8 × 10−3 m3 m−3)2, of which 19 % was in SMlong, 26 % in SMseas, and 55 % in SMshort. The AMSR-E assimilation significantly reduced the total ubMSE at every site, with an average reduction of 33 %. Of this ubMSE reduction, 37 % occurred in SMlong, 24 % in SMseas, and 38 % in SMshort. For root-zone soil moisture, in situ observations were available at one site only, and the near-surface and root-zone results were very similar at this site. These results suggest that, in addition to the well-reported improvements in SMshort, assimilating a sufficiently long soil moisture data record can also improve the model representation of important long-term events, such as droughts. The improved agreement between the modeled and in situ SMseas is harder to interpret, given that mean seasonal cycle errors are systematic, and systematic errors are not typically targeted by (bias-blind) data assimilation. Finally, the use of 1-year subsets of the AMSR-E and Catchment soil moisture for estimating the observation-bias correction (rescaling) parameters is investigated. It is concluded that when only 1 year of data are available, the associated uncertainty in the rescaling parameters should not greatly reduce the average benefit gained from data assimilation, although locally and in extreme years there is a risk of increased errors.


Sign in / Sign up

Export Citation Format

Share Document