Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation

2018 ◽  
Vol 559 ◽  
pp. 698-710 ◽  
Author(s):  
Yog N. Aryal ◽  
Gabriele Villarini ◽  
Wei Zhang ◽  
Gabriel A. Vecchi
2014 ◽  
Vol 14 (14) ◽  
pp. 21065-21099
Author(s):  
I. Petropavlovskikh ◽  
R. Evans ◽  
G. McConville ◽  
G. L. Manney ◽  
H. E. Rieder

Abstract. Continuous measurements of total ozone (by Dobson spectrophotometers) across the contiguous United States (US) began in the early 1960s. Here, we analyze temporal and spatial variability and trends in total ozone from the five US sites with long-term records. While similar long-term ozone changes are detected at all five sites, we find differences in the patterns of ozone variability on shorter time scales. In addition to standard evaluation techniques, STL-decomposition methods (Seasonal Trend decomposition of time series based on LOcally wEighted Scatterplot Smoothing, LOESS) are used to address temporal variability and trends in the Dobson data. The LOESS-smoothed trend components show a decline of total ozone between the 1970s and 2000s and a "stabilization" at lower levels in recent years, which is also confirmed by linear trend analysis. Methods from statistical extreme value theory (EVT) are used to characterize days with high and low total ozone (termed EHOs and ELOs, respectively) at each station and to analyze temporal changes in the frequency of ozone extremes and their relationship to dynamical features such as the North Atlantic Oscillation and El Niño Southern Oscillation. A comparison of the "fingerprints" detected in the frequency distribution of the extremes with those for standard metrics (i.e., the mean) shows that more "fingerprints" are found for the extremes, particularly for the positive phase of the NAO, at all five US monitoring sites. Results from the STL-decomposition support the findings of the EVT analysis. Finally, we analyze the relative influence of low and high ozone events on seasonal mean column ozone at each station. The results show that the influence of ELOs and EHOs on seasonal mean column ozone can be as much as ±5%, or about twice as large as the overall long-term decadal ozone trends.


2012 ◽  
Vol 16 (5) ◽  
pp. 1389-1399 ◽  
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation. In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period. Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index. Although the effects of the North Atlantic Oscillation (NAO) had already been demonstrated in the long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results of this study allow for the establishment of a link between a large-scale atmospheric cycle and the groundwater recharge of carbonate karst aquifers. Consequently, the winter NAO index could also be considered as a proxy to forecast the decadal variability of groundwater flow in Mediterranean karst areas.


2017 ◽  
Vol 17 (2) ◽  
pp. 124-144 ◽  
Author(s):  
Zeineddine Nouaceur ◽  
Ovidiu Murărescu ◽  
George Murătoreanu

AbstractThe IPCC climate models predict, for the Central Europe, are for climate changes, being seen variability of temperature, with a growing trend of 1-2,5° C (with 1° C for alpine zone – Carpathians and 2-2,5° C for plains). Current observations in the Romanian plain are not consistent, with an existence of a multiannual variability of temperature and precipitations depending on cyclonal and anti-ciclonal activity. The research is based on calculation of reduced centered index, also the graphical chronological method in information processing (MGCTI) of „Bertin Matrix” type, to show current trends of the spatio-temporal variability of precipitation in the context of global climate change. These are in line with the movement of air masses in Europe in general, and implicitly in Romania, with particular regard to the southern region of the country where the Romanian Plain. The variability of short-term global climate is generally associated with coupling phases of oceanic and atmospheric phenomena including El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). While El Niño Southern Oscillation (ENSO) affects climate variability in the world, the North Atlantic Oscillation (NAO) is the climate model dominant in the North Atlantic region. The latter cyclic oscillation whose role is still under debate could explain the variability of rainfall in much of the, central Europe area, and support the hypothesis of a return of the rains marking the end of years of drought in Romanian plain. Faced with such great changes that today affect the central Europe region and given the complexity of spatial and temporal dimensions of the climatic signal, a more thorough research of causes and retroactions would allow for a better understanding of the mechanisms behind this new trend.


2010 ◽  
Vol 49 (8) ◽  
pp. 1597-1603 ◽  
Author(s):  
Robert J. Warren ◽  
Mark A. Bradford

Abstract The North Atlantic Oscillation (NAO) is a large-scale climate teleconnection that coincides with worldwide changes in weather. Its impacts have been documented at large scales, particularly in Europe, but not as much at regional scales. Furthermore, despite documented impacts on ecological dynamics in Europe, the NAO’s influence on North American biota has been somewhat overlooked. This paper examines long-term temperature and precipitation trends in the southern Appalachian Mountain region—a region well known for its biotic diversity, particularly in salamander species—and examines the connections between these trends and NAO cycles. To connect the NAO phase shifts with southern Appalachian ecology, trends in stream salamander abundance are also examined as a function of the NAO index. The results reported here indicate no substantial long-term warming or precipitation trends in the southern Appalachians and suggest a strong relationship between cool season (November–April) temperature and precipitation and the NAO. More importantly, trends in stream salamander abundance are best explained by variation in the NAO as salamanders are most plentiful during the warmer, wetter phases.


2000 ◽  
Vol 18 (2) ◽  
pp. 247-251 ◽  
Author(s):  
R. García ◽  
P. Ribera ◽  
L. Gimenoo ◽  
E. Hernández

Abstract. The North Atlantic Oscillation (NAO) and the Southern Oscillation (SO) are compared from the standpoint of a possible common temporal scale of oscillation. To do this a cross-spectrum of the temporal series of NAO and SO indices was determined, finding a significant common oscillation of 6-8 years. To assure this finding, both series were decomposed in their main oscillations using singular spectrum analysis (SSA). Resulting reconstructed series of 6-8 years oscillation were then cross-correlated without and with pre-whitened, the latter being significant. The main conclusion is a possible relationship between a common oscillation of 6-8 years' that represents about 20% of the SO variance and about 25% of the NAO variance.Key words: Meteorology and atmospheric dynamics (climatology; ocean-atmosphere interactions)


Sign in / Sign up

Export Citation Format

Share Document