Predictive performance of NMME seasonal forecasts of global precipitation: A spatial-temporal perspective

2019 ◽  
Vol 570 ◽  
pp. 17-25 ◽  
Author(s):  
Tongtiegang Zhao ◽  
Yongyong Zhang ◽  
Xiaohong Chen
2019 ◽  
Author(s):  
Tongtiegang Zhao ◽  
Wei Zhang ◽  
Yongyong Zhang ◽  
Xiaohong Chen

Abstract. Fully-coupled global climate models (GCMs) generate a vast amount of high-dimensional forecast data of the global climate; therefore, interpreting and understanding the predictive performance is a critical issue in applying GCM forecasts. Spatial plotting is a powerful tool to identify where forecasts perform well and where forecasts are not satisfactory. Here we build upon the spatial plotting of anomaly correlation between forecast ensemble mean and observations and derive significant spatial patterns to illustrate the predictive performance. For the anomaly correlation derived from the ten sets of forecasts archived in the North America Multi-Model Ensemble (NMME) experiment, the global and local Moran's I are calculated to associate anomaly correlation at neighbouring grid cells to one another. The global Moran's I indicates that at the global scale anomaly correlation at one grid cell relates significantly and positively to anomaly correlation at surrounding grid cells, while the local Moran's I reveals clusters of grid cells with high, neutral, and low anomaly correlation. Overall, the forecasts produced by GCMs of similar settings and at the same climate center exhibit similar clustering of anomaly correlation. In the meantime, the forecasts in NMME show complementary performances. About 80 % of grid cells across the globe fall into the cluster of high anomaly correlation under at least one of the ten sets of forecasts. While anomaly correlation exhibits substantial spatial variability, the clustering approach serves as a filter of noise to identify spatial patterns and yields insights into the predictive performance of GCM seasonal forecasts of global precipitation.


2020 ◽  
Vol 24 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Tongtiegang Zhao ◽  
Wei Zhang ◽  
Yongyong Zhang ◽  
Zhiyong Liu ◽  
Xiaohong Chen

Abstract. Fully coupled global climate models (GCMs) generate a vast amount of high-dimensional forecast data of the global climate; therefore, interpreting and understanding the predictive performance is a critical issue in applying GCM forecasts. Spatial plotting is a powerful tool to identify where forecasts perform well and where forecasts are not satisfactory. Here we build upon the spatial plotting of anomaly correlation between forecast ensemble mean and observations to derive significant spatial patterns to illustrate the predictive performance. For the anomaly correlation derived from the 10 sets of forecasts archived in the North America Multi-Model Ensemble (NMME) experiment, the global and local Moran's I are calculated to associate anomaly correlations at neighbouring grid cells with one another. The global Moran's I associates anomaly correlation at the global scale and indicates that anomaly correlation at one grid cell relates significantly and positively to anomaly correlation at surrounding grid cells. The local Moran's I links anomaly correlation at one grid cell with its spatial lag and reveals clusters of grid cells with high, neutral, and low anomaly correlation. Overall, the forecasts produced by GCMs of similar settings and at the same climate centre exhibit similar clustering of anomaly correlation. In the meantime, the forecasts in NMME show complementary performances. About 80 % of grid cells across the globe fall into the cluster of high anomaly correlation under at least 1 of the 10 sets of forecasts. While anomaly correlation exhibits substantial spatial variability, the clustering approach serves as a filter of noise to identify spatial patterns and yields insights into the predictive performance of GCM seasonal forecasts of global precipitation.


Author(s):  
Eva–Maria Walz ◽  
Marlon Maranan ◽  
Roderick van der Linden ◽  
Andreas H. Fink ◽  
Peter Knippertz

AbstractCurrent numerical weather prediction models show limited skill in predicting low-latitude precipitation. To aid future improvements, be it with better dynamical or statistical models, we propose a well-defined benchmark forecast. We use the arguably best currently high-resolution, gauge-calibrated, gridded precipitation product, the Integrated Multi-Satellite Retrievals for GPM (Global Precipitation Measurement) (IMERG) “final run” in a ± 15-day window around the date of interest to build an empirical climatological ensemble forecast. This window size is an optimal compromise between statistical robustness and flexibility to represent seasonal changes. We refer to this benchmark as Extended Probabilistic Climatology (EPC) and compute it on a 0.1°×0.1° grid for 40°S–40°N and the period 2001–2019. In order to reduce and standardize information, a mixed Bernoulli-Gamma distribution is fitted to the empirical EPC, which hardly affects predictive performance. The EPC is then compared to 1-day ensemble predictions from the European Centre for Medium-Range Weather Forecasts (ECMWF) using standard verification scores. With respect to rainfall amount, ECMWF performs only slightly better than EPS over most of the low latitudes and worse over high-mountain and dry oceanic areas as well as over tropical Africa, where the lack of skill is also evident in independent station data. For rainfall occurrence, EPC is superior over most oceanic, coastal, and mountain regions, although the better potential predictive ability of ECMWF indicates that this is mostly due to calibration problems. To encourage the use of the new benchmark, we provide the data, scripts, and an interactive webtool to the scientific community.


2021 ◽  
Author(s):  
Tongtiegang Zhao ◽  
Haoling Chen ◽  
Quanxi Shao

Abstract. Climate teleconnections are essential for the verification of valuable precipitation forecasts generated by global climate models (GCMs). This paper develops a novel approach to attributing correlation skill of dynamical GCM forecasts to statistical El Niño-Southern Oscillation (ENSO) teleconnection by using the coefficient of determination (R2). Specifically, observed precipitation is respectively regressed against GCM forecasts, Niño3.4 and both of them and then the intersection operation is implemented to quantify the overlapping R2 for GCM forecasts and Niño3.4. The significance of overlapping R2 and the sign of ENSO teleconnection facilitate three cases of attribution, i.e., significantly positive anomaly correlation attributable to positive ENSO teleconnection, attributable to negative ENSO teleconnection and not attributable to ENSO teleconnection. A case study is devised for the Climate Forecast System version 2 (CFSv2) seasonal forecasts of global precipitation. For grid cells around the world, the ratio of significantly positive anomaly correlation attributable to positive (negative) ENSO teleconnection is respectively 10.8 % (11.7 %) in December-January-February (DJF), 7.1 % (7.3 %) in March-April-May (MAM), 6.3 % (7.4 %) in June-July-August (JJA) and 7.0 % (14.3 %) in September-October-November (SON). The results not only confirm the prominent contributions of ENSO teleconnection to GCM forecasts, but also present spatial plots of regions where significantly positive anomaly correlation is subject to positive ENSO teleconnection, negative ENSO teleconnection and teleconnections other than ENSO. Overall, the proposed attribution approach can serve as an effective tool to investigate the source of predictability for GCM seasonal forecasts of global precipitation.


2015 ◽  
Vol 12 (1) ◽  
pp. 31-36 ◽  
Author(s):  
O. Hyvärinen ◽  
L. Mtilatila ◽  
K. Pilli-Sihvola ◽  
A. Venäläinen ◽  
H. Gregow

Abstract. We assess the probabilistic seasonal precipitation forecasts issued by Regional Climate Outlook Forum (RCOF) for the area of two southern African countries, Malawi and Zambia from 2002 to 2013. The forecasts, issued in August, are of rainy season rainfall accumulations in three categories (above normal, normal, and below normal), for early season (October–December) and late season (January–March). As observations we used in-situ observations and interpolated precipitation products from Global Precipitation Climatology Project (GPCP), Global Precipitation Climatology Centre (GPCC), and Climate Prediction Centre (CPC) Merged Analysis of Precipitation (CMAP). Differences between results from different data products are smaller than confidence intervals calculated by bootstrap. We focus on below normal forecasts as they were deemed to be the most important for society. The well-known decomposition of Brier score into three terms (Reliability, Resolution, and Uncertainty) shows that the forecasts are rather reliable or well-calibrated, but have a very low resolution; that is, they are not able to discriminate different events. The forecasts also lack sharpness as forecasts for one category are rarely higher than 40 % or less than 25 %. However, these results might be unnecessarily pessimistic, because seasonal forecasts have gone through much development during the period when the forecasts verified in this paper were issued, and forecasts using current methodology might have performed better.


Author(s):  
PHILIPPE BAECKE ◽  
DIRK VAN DEN POEL

Nowadays, an increasing number of information technology tools are implemented in order to support decision making about marketing strategies and improve customer relationship management (CRM). Consequently, an improvement in CRM can be obtained by enhancing the databases on which these information technology tools are based. This study shows that data augmentation with situational variables of the purchase occasion can significantly improve purchasing behavior predictions for a home vending company. Three dimensions of situational variables are examined: physical surroundings, temporal perspective and social surroundings respectively represented by weather, time, and salesperson variables. The smallest, but still significant, increase in predictive performance was measured by enhancing the model with time variables. Besides the moment of the day, this study shows that the incorporation of weather variables, and more specifically sunshine, can also improve the accuracy of a CRM model. Finally, the best improvement in purchasing behavior predictions was obtained by taking the salesperson effect into account using a multilevel model.


2020 ◽  
Vol 55 (7-8) ◽  
pp. 2273-2286
Author(s):  
Tongtiegang Zhao ◽  
Haoling Chen ◽  
Weixin Xu ◽  
Huayang Cai ◽  
Denghua Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document