scholarly journals Significant spatial patterns from the GCM seasonal forecasts of global precipitation

2019 ◽  
Author(s):  
Tongtiegang Zhao ◽  
Wei Zhang ◽  
Yongyong Zhang ◽  
Xiaohong Chen

Abstract. Fully-coupled global climate models (GCMs) generate a vast amount of high-dimensional forecast data of the global climate; therefore, interpreting and understanding the predictive performance is a critical issue in applying GCM forecasts. Spatial plotting is a powerful tool to identify where forecasts perform well and where forecasts are not satisfactory. Here we build upon the spatial plotting of anomaly correlation between forecast ensemble mean and observations and derive significant spatial patterns to illustrate the predictive performance. For the anomaly correlation derived from the ten sets of forecasts archived in the North America Multi-Model Ensemble (NMME) experiment, the global and local Moran's I are calculated to associate anomaly correlation at neighbouring grid cells to one another. The global Moran's I indicates that at the global scale anomaly correlation at one grid cell relates significantly and positively to anomaly correlation at surrounding grid cells, while the local Moran's I reveals clusters of grid cells with high, neutral, and low anomaly correlation. Overall, the forecasts produced by GCMs of similar settings and at the same climate center exhibit similar clustering of anomaly correlation. In the meantime, the forecasts in NMME show complementary performances. About 80 % of grid cells across the globe fall into the cluster of high anomaly correlation under at least one of the ten sets of forecasts. While anomaly correlation exhibits substantial spatial variability, the clustering approach serves as a filter of noise to identify spatial patterns and yields insights into the predictive performance of GCM seasonal forecasts of global precipitation.

2020 ◽  
Vol 24 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Tongtiegang Zhao ◽  
Wei Zhang ◽  
Yongyong Zhang ◽  
Zhiyong Liu ◽  
Xiaohong Chen

Abstract. Fully coupled global climate models (GCMs) generate a vast amount of high-dimensional forecast data of the global climate; therefore, interpreting and understanding the predictive performance is a critical issue in applying GCM forecasts. Spatial plotting is a powerful tool to identify where forecasts perform well and where forecasts are not satisfactory. Here we build upon the spatial plotting of anomaly correlation between forecast ensemble mean and observations to derive significant spatial patterns to illustrate the predictive performance. For the anomaly correlation derived from the 10 sets of forecasts archived in the North America Multi-Model Ensemble (NMME) experiment, the global and local Moran's I are calculated to associate anomaly correlations at neighbouring grid cells with one another. The global Moran's I associates anomaly correlation at the global scale and indicates that anomaly correlation at one grid cell relates significantly and positively to anomaly correlation at surrounding grid cells. The local Moran's I links anomaly correlation at one grid cell with its spatial lag and reveals clusters of grid cells with high, neutral, and low anomaly correlation. Overall, the forecasts produced by GCMs of similar settings and at the same climate centre exhibit similar clustering of anomaly correlation. In the meantime, the forecasts in NMME show complementary performances. About 80 % of grid cells across the globe fall into the cluster of high anomaly correlation under at least 1 of the 10 sets of forecasts. While anomaly correlation exhibits substantial spatial variability, the clustering approach serves as a filter of noise to identify spatial patterns and yields insights into the predictive performance of GCM seasonal forecasts of global precipitation.


2021 ◽  
Author(s):  
Tongtiegang Zhao ◽  
Haoling Chen ◽  
Quanxi Shao

Abstract. Climate teleconnections are essential for the verification of valuable precipitation forecasts generated by global climate models (GCMs). This paper develops a novel approach to attributing correlation skill of dynamical GCM forecasts to statistical El Niño-Southern Oscillation (ENSO) teleconnection by using the coefficient of determination (R2). Specifically, observed precipitation is respectively regressed against GCM forecasts, Niño3.4 and both of them and then the intersection operation is implemented to quantify the overlapping R2 for GCM forecasts and Niño3.4. The significance of overlapping R2 and the sign of ENSO teleconnection facilitate three cases of attribution, i.e., significantly positive anomaly correlation attributable to positive ENSO teleconnection, attributable to negative ENSO teleconnection and not attributable to ENSO teleconnection. A case study is devised for the Climate Forecast System version 2 (CFSv2) seasonal forecasts of global precipitation. For grid cells around the world, the ratio of significantly positive anomaly correlation attributable to positive (negative) ENSO teleconnection is respectively 10.8 % (11.7 %) in December-January-February (DJF), 7.1 % (7.3 %) in March-April-May (MAM), 6.3 % (7.4 %) in June-July-August (JJA) and 7.0 % (14.3 %) in September-October-November (SON). The results not only confirm the prominent contributions of ENSO teleconnection to GCM forecasts, but also present spatial plots of regions where significantly positive anomaly correlation is subject to positive ENSO teleconnection, negative ENSO teleconnection and teleconnections other than ENSO. Overall, the proposed attribution approach can serve as an effective tool to investigate the source of predictability for GCM seasonal forecasts of global precipitation.


2021 ◽  
Vol 13 (21) ◽  
pp. 12277
Author(s):  
Xinba Li ◽  
Chuanrong Zhang

While it is well-known that housing prices generally increased in the United States (U.S.) during the COVID-19 pandemic crisis, to the best of our knowledge, there has been no research conducted to understand the spatial patterns and heterogeneity of housing price changes in the U.S. real estate market during the crisis. There has been less attention on the consequences of this pandemic, in terms of the spatial distribution of housing price changes in the U.S. The objective of this study was to explore the spatial patterns and heterogeneous distribution of housing price change rates across different areas of the U.S. real estate market during the COVID-19 pandemic. We calculated the global Moran’s I, Anselin’s local Moran’s I, and Getis-Ord’s statistics of the housing price change rates in 2856 U.S. counties. The following two major findings were obtained: (1) The influence of the COVID-19 pandemic crisis on housing price change varied across space in the U.S. The patterns not only differed from metropolitan areas to rural areas, but also varied from one metropolitan area to another. (2) It seems that COVID-19 made Americans more cautious about buying property in densely populated urban downtowns that had higher levels of virus infection; therefore, it was found that during the COVID-19 pandemic year of 2020–2021, the housing price hot spots were typically located in more affordable suburbs, smaller cities, and areas away from high-cost, high-density urban downtowns. This study may be helpful for understanding the relationship between the COVID-19 pandemic and the real estate market, as well as human behaviors in response to the pandemic.


Author(s):  
J Berner ◽  
F.J Doblas-Reyes ◽  
T.N Palmer ◽  
G Shutts ◽  
A Weisheimer

The impact of a nonlinear dynamic cellular automaton (CA) model, as a representation of the partially stochastic aspects of unresolved scales in global climate models, is studied in the European Centre for Medium Range Weather Forecasts coupled ocean–atmosphere model. Two separate aspects are discussed: impact on the systematic error of the model, and impact on the skill of seasonal forecasts. Significant reductions of systematic error are found both in the tropics and in the extratropics. Such reductions can be understood in terms of the inherently nonlinear nature of climate, in particular how energy injected by the CA at the near-grid scale can backscatter nonlinearly to larger scales. In addition, significant improvements in the probabilistic skill of seasonal forecasts are found in terms of a number of different variables such as temperature, precipitation and sea-level pressure. Such increases in skill can be understood both in terms of the reduction of systematic error as mentioned above, and in terms of the impact on ensemble spread of the CA's representation of inherent model uncertainty.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Huling Li ◽  
Hui Li ◽  
Zhongxing Ding ◽  
Zhibin Hu ◽  
Feng Chen ◽  
...  

The cluster of pneumonia cases linked to coronavirus disease 2019 (Covid-19), first reported in China in late December 2019 raised global concern, particularly as the cumulative number of cases reported between 10 January and 5 March 2020 reached 80,711. In order to better understand the spread of this new virus, we characterized the spatial patterns of Covid-19 cumulative cases using ArcGIS v.10.4.1 based on spatial autocorrelation and cluster analysis using Global Moran’s I (Moran, 1950), Local Moran’s I and Getis-Ord General G (Ord and Getis, 2001). Up to 5 March 2020, Hubei Province, the origin of the Covid-19 epidemic, had reported 67,592 Covid-19 cases, while the confirmed cases in the surrounding provinces Guangdong, Henan, Zhejiang and Hunan were 1351, 1272, 1215 and 1018, respectively. The top five regions with respect to incidence were the following provinces: Hubei (11.423/10,000), Zhejiang (0.212/10,000), Jiangxi (0.201/10,000), Beijing (0.196/10,000) and Chongqing (0.186/10,000). Global Moran’s I analysis results showed that the incidence of Covid-19 is not negatively correlated in space (p=0.407413>0.05) and the High-Low cluster analysis demonstrated that there were no high-value incidence clusters (p=0.076098>0.05), while Local Moran’s I analysis indicated that Hubei is the only province with High-Low aggregation (p<0.0001).


2018 ◽  
Vol 46 (6) ◽  
pp. 647-658 ◽  
Author(s):  
Mohammadreza Rajabi ◽  
Ali Mansourian ◽  
Petter Pilesjö ◽  
Daniel Oudin Åström ◽  
Klas Cederin ◽  
...  

Aims: Cardiovascular disease (CVD) is one of the leading causes of mortality and morbidity worldwide, including in Sweden. The main aim of this study was to explore the temporal trends and spatial patterns of CVD in Sweden using spatial autocorrelation analyses. Methods: The CVD admission rates between 2000 and 2010 throughout Sweden were entered as the input disease data for the analytic processes performed for the Swedish capital, Stockholm, and also for the whole of Sweden. Age-adjusted admission rates were calculated using a direct standardisation approach for men and women, and temporal trends analysis were performed on the standardised rates. Global Moran’s I was used to explore the structure of patterns and Anselin’s local Moran’s I, together with Kulldorff’s scan statistic were applied to explore the geographical patterns of admission rates. Results: The rates followed a spatially clustered pattern in Sweden with differences occurring between sexes. Accordingly, hot spots were identified in northern Sweden, with higher intensity identified for men, together with clusters in central Sweden. Cold spots were identified in the adjacency of the three major Swedish cities of Stockholm, Gothenburg and Malmö. Conclusions: The findings of this study can serve as a basis for distribution of health-care resources, preventive measures and exploration of aetiological factors.


2017 ◽  
Author(s):  
Andrew Schepen ◽  
Tongtiegang Zhao ◽  
Quan J. Wang ◽  
David E. Robertson

Abstract. Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal time scales. In seasonal forecasting, global climate models (GCMs) are now the go-to source for rainfall forecasts. However, for hydrological applications, GCM forecasts are often biased and unreliable in uncertainty spread, and therefore calibration is required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S) based on the Bayesian joint probability approach for calibrating daily forecasts and the Schaake Shuffle approach for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.


Author(s):  
Yawen Shao ◽  
Quan J. Wang ◽  
Andrew Schepen ◽  
Dongryeol Ryu

AbstractFor managing climate variability and adapting to climate change, seasonal forecasts are widely produced to inform decision making. However, seasonal forecasts from global climate models are found to poorly reproduce temperature trends in observations. Furthermore, this problem is not addressed by existing forecast post-processing methods that are needed to remedy biases and uncertainties in model forecasts. The inability of the forecasts to reproduce the trends severely undermines user confidence in the forecasts. In our previous work, we proposed a new statistical post-processing model that counteracted departures in trends of model forecasts from observations. Here, we further extend this trend-aware forecast post-processing methodology to carefully treat the trend uncertainty associated with the sampling variability due to limited data records. This new methodology is validated on forecasting seasonal averages of daily maximum and minimum temperatures for Australia based on the SEAS5 climate model of the European Centre for Medium-Range Weather Forecasts. The resulting post-processed forecasts are shown to have proper trends embedded, leading to greater accuracy in regions with significant trends. The application of this new forecast post-processing is expected to boost user confidence in seasonal climate forecasts.


Sign in / Sign up

Export Citation Format

Share Document