scholarly journals An IMERG-Based Optimal Extended Probabilistic Climatology (EPC) as a Benchmark Ensemble Forecast for Precipitation in the Tropics and Subtropics

Author(s):  
Eva–Maria Walz ◽  
Marlon Maranan ◽  
Roderick van der Linden ◽  
Andreas H. Fink ◽  
Peter Knippertz

AbstractCurrent numerical weather prediction models show limited skill in predicting low-latitude precipitation. To aid future improvements, be it with better dynamical or statistical models, we propose a well-defined benchmark forecast. We use the arguably best currently high-resolution, gauge-calibrated, gridded precipitation product, the Integrated Multi-Satellite Retrievals for GPM (Global Precipitation Measurement) (IMERG) “final run” in a ± 15-day window around the date of interest to build an empirical climatological ensemble forecast. This window size is an optimal compromise between statistical robustness and flexibility to represent seasonal changes. We refer to this benchmark as Extended Probabilistic Climatology (EPC) and compute it on a 0.1°×0.1° grid for 40°S–40°N and the period 2001–2019. In order to reduce and standardize information, a mixed Bernoulli-Gamma distribution is fitted to the empirical EPC, which hardly affects predictive performance. The EPC is then compared to 1-day ensemble predictions from the European Centre for Medium-Range Weather Forecasts (ECMWF) using standard verification scores. With respect to rainfall amount, ECMWF performs only slightly better than EPS over most of the low latitudes and worse over high-mountain and dry oceanic areas as well as over tropical Africa, where the lack of skill is also evident in independent station data. For rainfall occurrence, EPC is superior over most oceanic, coastal, and mountain regions, although the better potential predictive ability of ECMWF indicates that this is mostly due to calibration problems. To encourage the use of the new benchmark, we provide the data, scripts, and an interactive webtool to the scientific community.

2018 ◽  
Vol 10 (10) ◽  
pp. 1520 ◽  
Author(s):  
Adrianos Retalis ◽  
Dimitris Katsanos ◽  
Filippos Tymvios ◽  
Silas Michaelides

Global Precipitation Measurement (GPM) high-resolution product is validated against rain gauges over the island of Cyprus for a three-year period, starting from April 2014. The precipitation estimates are available in both high temporal (half hourly) and spatial (10 km) resolution and combine data from all passive microwave instruments in the GPM constellation. The comparison performed is twofold: first the GPM data are compared with the precipitation measurements on a monthly basis and then the comparison focuses on extreme events, recorded throughout the first 3 years of GPM’s operation. The validation is based on ground data from a dense and reliable network of rain gauges, also available in high temporal (hourly) resolution. The first results show very good correlation regarding monthly values; however, the correspondence of GPM in extreme precipitation varies from “no correlation” to “high correlation”, depending on case. This study aims to verify the GPM rain estimates, since such a high-resolution dataset has numerous applications, including the assimilation in numerical weather prediction models and the study of flash floods with hydrological models.


2007 ◽  
Vol 135 (4) ◽  
pp. 1424-1438 ◽  
Author(s):  
Andrew R. Lawrence ◽  
James A. Hansen

Abstract An ensemble-based data assimilation approach is used to transform old ensemble forecast perturbations with more recent observations for the purpose of inexpensively increasing ensemble size. The impact of the transformations are propagated forward in time over the ensemble’s forecast period without rerunning any models, and these transformed ensemble forecast perturbations can be combined with the most recent ensemble forecast to sensibly increase forecast ensemble sizes. Because the transform takes place in perturbation space, the transformed perturbations must be centered on the ensemble mean from the most recent forecasts. Thus, the benefit of the approach is in terms of improved ensemble statistics rather than improvements in the mean. Larger ensemble forecasts can be used for numerous purposes, including probabilistic forecasting, targeted observations, and to provide boundary conditions to limited-area models. This transformed lagged ensemble forecasting approach is explored and is shown to give positive results in the context of a simple chaotic model. By incorporating a suitable perturbation inflation factor, the technique was found to generate forecast ensembles whose skill were statistically comparable to those produced by adding nonlinear model integrations. Implications for ensemble forecasts generated by numerical weather prediction models are briefly discussed, including multimodel ensemble forecasting.


2018 ◽  
Vol 32 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Xiping Zeng ◽  
Gail Skofronick-Jackson ◽  
Lin Tian ◽  
Amber E. Emory ◽  
William S. Olson ◽  
...  

Abstract Information about the characteristics of ice particles in clouds is necessary for improving our understanding of the states, processes, and subsequent modeling of clouds and precipitation for numerical weather prediction and climate analysis. Two NASA passive microwave radiometers, the satellite-borne Global Precipitation Measurement (GPM) Microwave Imager (GMI) and the aircraft-borne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR), measure vertically and horizontally polarized microwaves emitted by clouds (including precipitating particles) and Earth’s surface below. In this paper, GMI (or CoSMIR) data are analyzed with CloudSat (or aircraft-borne radar) data to find polarized difference (PD) signals not affected by the surface, thereby obtaining the information on ice particles. Statistical analysis of 4 years of GMI and CloudSat data, for the first time, reveals that optically thick clouds contribute positively to GMI PD at 166 GHz over all the latitudes and their positive magnitude of 166-GHz GMI PD varies little with latitude. This result suggests that horizontally oriented ice crystals in thick clouds are common from the tropics to high latitudes, which contrasts the result of Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) that horizontally oriented ice crystals are rare in optically thin ice clouds.


2020 ◽  
Vol 148 (4) ◽  
pp. 1503-1517 ◽  
Author(s):  
Fumin Ren ◽  
Chenchen Ding ◽  
Da-Lin Zhang ◽  
Deliang Chen ◽  
Hong-li Ren ◽  
...  

Abstract Combining dynamical models with statistical algorithms is an important way to improve weather and climate prediction. In this study, a concept of a perfect model, whose solutions are from observations, is introduced, and a dynamical-statistical-analog ensemble forecast (DSAEF) model is developed as an initial-value problem of the perfect model. This new analog-based forecast model consists of the following three steps: (i) construct generalized initial value (GIV), (ii) identify analogs from historical observations, and (iii) produce an ensemble of predictands. The first step includes all appropriate variables, not only at an instant state but also during their temporal evolution, that play an important role in determining the accuracy of each predictand. An application of the DSAEF model is illustrated through the prediction of accumulated rainfall associated with 21 landfalling typhoons occurring over South China during the years of 2012–16. Assuming a reliable forecast of landfalling typhoon track, two different experiments are conducted, in which the GIV is constructed by including (i) typhoon track only; and (ii) both typhoon track and landfall season. Results show overall better performance of the second experiment than the first one in predicting heavy accumulated rainfall in the training sample tests. In addition, the forecast performance of both experiments is comparable to the operational numerical weather prediction models currently used in China, the United States, and Europe. Some limitations and future improvements as well as comparisons with some existing analog ensemble models are also discussed.


2017 ◽  
Vol 98 (6) ◽  
pp. 1169-1184 ◽  
Author(s):  
Dalia B. Kirschbaum ◽  
George J. Huffman ◽  
Robert F. Adler ◽  
Scott Braun ◽  
Kevin Garrett ◽  
...  

Abstract Precipitation is the fundamental source of freshwater in the water cycle. It is critical for everyone, from subsistence farmers in Africa to weather forecasters around the world, to know when, where, and how much rain and snow is falling. The Global Precipitation Measurement (GPM) Core Observatory spacecraft, launched in February 2014, has the most advanced instruments to measure precipitation from space and, together with other satellite information, provides high-quality merged data on rain and snow worldwide every 30 min. Data from GPM and the predecessor Tropical Rainfall Measuring Mission (TRMM) have been fundamental to a broad range of applications and end-user groups and are among the most widely downloaded Earth science data products across NASA. End-user applications have rapidly become an integral component in translating satellite data into actionable information and knowledge used to inform policy and enhance decision-making at local to global scales. In this article, we present NASA precipitation data, capabilities, and opportunities from the perspective of end users. We outline some key examples of how TRMM and GPM data are being applied across a broad range of sectors, including numerical weather prediction, disaster modeling, agricultural monitoring, and public health research. This work provides a discussion of some of the current needs of the community as well as future plans to better support end-user communities across the globe to utilize this data for their own applications.


2017 ◽  
Vol 21 (3) ◽  
pp. 1-10 ◽  
Author(s):  
Thomas Stanley ◽  
Dalia B. Kirschbaum ◽  
George J. Huffman ◽  
Robert F. Adler

Abstract Long-term precipitation records are vital to many applications, especially the study of extreme events. The Tropical Rainfall Measuring Mission (TRMM) has served this need, but TRMM’s successor mission, Global Precipitation Measurement (GPM), does not yet provide a long-term record. Quantile mapping, the conversion of values across paired empirical distributions, offers a simple, established means to approximate such long-term statistics but only within appropriately defined domains. This method was applied to a case study in Central America, demonstrating that quantile mapping between TRMM and GPM data maintains the performance of a real-time landslide model. Use of quantile mapping could bring the benefits of the latest satellite-based precipitation dataset to existing user communities, such as those for hazard assessment, crop forecasting, numerical weather prediction, and disease tracking.


2020 ◽  
Vol 12 (10) ◽  
pp. 1580 ◽  
Author(s):  
Stuart Newman ◽  
Fabien Carminati ◽  
Heather Lawrence ◽  
Niels Bormann ◽  
Kirsti Salonen ◽  
...  

Confidence in the use of Earth observations for monitoring essential climate variables (ECVs) relies on the validation of satellite calibration accuracy to within a well-defined uncertainty. The gap analysis for integrated atmospheric ECV climate monitoring (GAIA-CLIM) project investigated the calibration/validation of satellite data sets using non-satellite reference data. Here, we explore the role of numerical weather prediction (NWP) frameworks for the assessment of several meteorological satellite sensors: the advanced microwave scanning radiometer 2 (AMSR2), microwave humidity sounder-2 (MWHS-2), microwave radiation imager (MWRI), and global precipitation measurement (GPM) microwave imager (GMI). We find departures (observation-model differences) are sensitive to instrument calibration artefacts. Uncertainty in surface emission is identified as a key gap in our ability to validate microwave imagers quantitatively in NWP. The prospects for NWP-based validation of future instruments are considered, taking as examples the microwave sounder (MWS) and infrared atmospheric sounding interferometer-next generation (IASI-NG) on the next generation of European polar-orbiting satellites. Through comparisons with reference radiosondes, uncertainties in NWP fields can be estimated in terms of equivalent top-of-atmosphere brightness temperature. We find NWP-sonde differences are consistent with a total combined uncertainty of 0.15 K for selected temperature sounding channels, while uncertainties for humidity sounding channels typically exceed 1 K.


2016 ◽  
Vol 21 (3) ◽  
pp. 224-232
Author(s):  
Elizabeth Marek ◽  
Jeremiah D. Momper ◽  
Ronald N. Hines ◽  
Cheryl M. Takao ◽  
Joan C. Gill ◽  
...  

OBJECTIVES: The objective of this study was to evaluate the performance of pediatric pharmacogenetic-based dose prediction models by using an independent cohort of pediatric patients from a multicenter trial. METHODS: Clinical and genetic data (CYP2C9 [cytochrome P450 2C9] and VKORC1 [vitamin K epoxide reductase]) were collected from pediatric patients aged 3 months to 17 years who were receiving warfarin as part of standard care at 3 separate clinical sites. The accuracy of 8 previously published pediatric pharmacogenetic-based dose models was evaluated in the validation cohort by comparing predicted maintenance doses to actual stable warfarin doses. The predictive ability was assessed by using the proportion of variance (R2), mean prediction error (MPE), and the percentage of predictions that fell within 20% of the actual maintenance dose. RESULTS: Thirty-two children reached a stable international normalized ratio and were included in the validation cohort. The pharmacogenetic-based warfarin dose models showed a proportion of variance ranging from 35% to 78% and an MPE ranging from −2.67 to 0.85 mg/day in the validation cohort. Overall, the model developed by Hamberg et al showed the best performance in the validation cohort (R2 = 78%; MPE = 0.15 mg/day) with 38% of the predictions falling within 20% of observed doses. CONCLUSIONS: Pharmacogenetic-based algorithms provide better predictions than a fixed-dose approach, although an optimal dose algorithm has not yet been developed.


2011 ◽  
Vol 26 (1) ◽  
pp. 77-93 ◽  
Author(s):  
Hsiao-Chung Tsai ◽  
Kuo-Chen Lu ◽  
Russell L. Elsberry ◽  
Mong-Ming Lu ◽  
Chung-Hsiung Sui

Abstract An automated technique has been developed for the detection and tracking of tropical cyclone–like vortices (TCLVs) in numerical weather prediction models, and especially for ensemble-based models. A TCLV is detected in the model grid when selected dynamic and thermodynamic fields meet specified criteria. A backward-and-forward extension from the mature stage of the track is utilized to complete the track. In addition, a fuzzy logic approach is utilized to calculate the TCLV fuzzy combined-likelihood value (TFCV) for representing the TCLV characteristics in the ensemble forecast outputs. The primary objective of the TCLV tracking and TFCV maps is for use as an evaluation tool for the operational forecasters. It is demonstrated that this algorithm efficiently extracts western North Pacific TCLV information from the vast amount of ensemble data from the NCEP Global Ensemble Forecast System (GEFS). The predictability of typhoon formation and activity during June–December 2008 is also evaluated. The TCLV track numbers and TFCV averages around the formation locations during the 0–96-h period are more skillful than for the 102–384-h forecasts. Compared to weak tropical cyclones (TCs; maximum intensity ≤ 50 kt), the storms that eventually become stronger TCs do have larger TFCVs. Depending on the specified domain size and the ensemble track numbers to define a forecast event, some skill is indicated in predicting the named TC activity. Although this evaluation with the 2008 typhoon season indicates some potential, an evaluation with a larger sample is necessary to statistically verify the reliability of the GEFS forecasts.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 134
Author(s):  
Xiaoyu Li ◽  
Sheng Chen ◽  
Zhenqing Liang ◽  
Chaoying Huang ◽  
Zhi Li ◽  
...  

This paper evaluated the latest version 6.0 Global Satellite Mapping of Precipitation (GSMaP) and version 6.0 Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) products during 2018 Typhoon Mangkhut in China. The reference data is the rain gauge datasets from Gauge-Calibrated Climate Prediction Centre (CPC) Morphing Technique (CMORPHGC). The products for comparison include the GSMaP near-real-time, Microwave-IR merged, and gauge-calibrated (GSMaP_NRT, GSMaP_MVK, and GSMaP_Gauge) and the IMERG Early, Final, and Final gauge-calibrated (IMERG_ERUncal, IMERG_FRUncal, and IMERG_FRCal) products. The results show that (1) both GSMaP_Gauge and IMERG_FRCal considerably reduced the bias of their satellite-only products. GSMaP_Gauge outperforms IMERG_FRCal with higher Correlation Coefficient (CC) values of about 0.85, 0.78, and 0.50; lower Fractional Standard Error (FSE) values of about 18.00, 18.85, and 29.30; and Root-Mean-Squared Error (RMSE) values of about 12.12, 33.35, and 32.99 mm in the rainfall centers over mainland China, southern China, and eastern China, respectively. (2) GSMaP products perform better than IMERG products, with higher Probability of Detection (POD) and Critical Success Index (CSI) and lower False Alarm Ratio (FAR) in detecting rainfall occurrence, especially for high rainfall rates. (3) For area-mean rainfall, IMERG performs worse than GSMaP in the rainfall centers over mainland China and southern China but shows better performance in the rainfall center over eastern China. GSMaP_Gauge and IMERG_FRCal perform well in the three regions with a high CC (0.79 vs. 0.94, 0.81 vs. 0.96, and 0.95 vs. 0.97) and a low RMSE (0.04 vs. 0.06, 0.40 vs. 0.59, and 0.19 vs. 0.34 mm). These useful findings will help algorithm developers and data users to better understand the performance of GSMaP and IMERG products during typhoon precipitation events.


Sign in / Sign up

Export Citation Format

Share Document