A field investigation on ephemeral gully erosion processes under different upslope inflow and sediment conditions

2019 ◽  
Vol 572 ◽  
pp. 517-527 ◽  
Author(s):  
Tongjia Wu ◽  
Chengzhong Pan ◽  
Changjia Li ◽  
Mingjie Luo ◽  
Xiaoyu Wang
CATENA ◽  
2013 ◽  
Vol 101 ◽  
pp. 226-234 ◽  
Author(s):  
C. Di Stefano ◽  
V. Ferro ◽  
V. Pampalone ◽  
F. Sanzone

2019 ◽  
Vol 187 ◽  
pp. 72-84 ◽  
Author(s):  
Li Rong ◽  
Xingwu Duan ◽  
Guangli Zhang ◽  
Zhijia Gu ◽  
Detai Feng

Author(s):  
X. Xu ◽  
Q. Tang

Abstract. LIDAR and photogrammetry techniques were used to quantify the land surface morphology dynamics of ephemeral gully system based on the field investigation. LIDAR monitoring results showed that ephemeral gully occurred in the same location on the slope surface after every rainy season in the ephemeral gully system, then lateral topsoil was tilled and brought into the ephemeral gully channel, inducing 2 cm decrease around channel before rainy season of next year, which make it a cycle of erosion-tillage-erosion. During this process, imbricated landform was formed in ephemeral gully system. The photogrammetry monitoring results showed that most drop-sills distances in ephemeral gully channel were in 10 to 25 cm, while slope gradients were among 15° to 40°. The drop-sills distance and slope gradient showed negative exponent relationship. The results of this study showed that LIDAR technology can quickly acquire the topographic characteristics of the whole ephemeral gully system, while photogrammetry method could quickly acquire detailed morphology in ephemeral gully channel.


2009 ◽  
Vol 34 (14) ◽  
pp. 1839-1840 ◽  
Author(s):  
Javier Casalí ◽  
Rafael Giménez ◽  
Sean Bennett

2017 ◽  
Vol 21 (1) ◽  
pp. 235-249 ◽  
Author(s):  
Antonio Hayas ◽  
Tom Vanwalleghem ◽  
Ana Laguna ◽  
Adolfo Peña ◽  
Juan V. Giráldez

Abstract. Gully erosion is an important erosive process in Mediterranean basins. However, the long-term dynamics of gully networks and the variations in sediment production in gullies are not well known. Available studies are often conducted only over a few years, while many gully networks form, grow, and change in response to environmental and land use or management changes over a long period. In order to clarify the effect of these changes, it is important to analyse the evolution of the gully network with a high temporal resolution. This study aims at analysing gully morphodynamics over a long timescale (1956–2013) in a large Mediterranean area in order to quantify gully erosion processes and their contribution to overall sediment dynamics. A gully network of 20 km2 located in southwestern Spain has been analysed using a sequence of 10 aerial photographs in the period 1956–2013. The extension of the gully network both increased and decreased in the study period. Gully drainage density varied between 1.93 km km−2 in 1956, a minimum of 1.37 km km−2 in 1980, and a maximum of 5.40 km km−2 in 2013. The main controlling factor of gully activity appeared to be rainfall. Land use changes were found to have only a secondary effect. A new Monte Carlo-based approach was proposed to reconstruct gully erosion rates from orthophotos. Gully erosion rates were found to be relatively stable between 1956 and 2009, with a mean value of 11.2 t ha−1 yr−1. In the period 2009–2011, characterized by severe winter rainfalls, this value increased significantly to 591 t ha−1 yr−1. These results show that gully erosion rates are highly variable and that a simple interpolation between the starting and ending dates greatly underestimates gully contribution during certain years, such as, for example, between 2009 and 2011. This illustrates the importance of the methodology applied using a high temporal resolution of orthophotos.


Geomorphology ◽  
2011 ◽  
Vol 125 (1) ◽  
pp. 203-213 ◽  
Author(s):  
J.G. Gong ◽  
Y.W. Jia ◽  
Z.H. Zhou ◽  
Y. Wang ◽  
W.L. Wang ◽  
...  

2019 ◽  
Vol 11 (12) ◽  
pp. 3369 ◽  
Author(s):  
Shuyue Feng ◽  
Hui Wen ◽  
Shimin Ni ◽  
Junguang Wang ◽  
Chongfa Cai

In the subtropical hilly areas of China, a collapsing gully, a particular type of permanent gully, poses a great threat to the productivity and sustainability of the local ecological and agricultural systems. However, few studies have been performed regarding the effects of collapsing gully erosion on soil degradation. The aim of this study was to evaluate the effects of collapsing gully erosion on soil-quality-related physical and chemical properties. The collapsing gullies that were severely affected by erosion processes were considered at three stages (initial, active and stable stages) and corresponding soil samples were collected to analyze the spatial variation of the soil physical and chemical quality at each stage. The changes in the properties were assumed to be considerable in the regions affected by the erosion process compared with those unaffected by this process. Soil physical properties were more susceptible than soil nutrients to collapsing gully erosion in different spatial locations. The soil quality index (SQI) system consists of total nitrogen (TN), total phosphorus (TP), pH, capillary porosity (CP), sand content (SA), soil cohesion (SC) and root density (RD). Collapsing gully erosion was found to affect the soil physical and chemical properties by progressively reducing the SQI. The mean SQI value was the lowest in the active stage of the collapsing gully, with a higher soil degradation. For the different spatial positions in the collapsing gullies, the scour channel showed the lowest SQI value. The limiting indicators varied in the different stages or spatial sites in the collapsing gullies.


2020 ◽  
Author(s):  
Youssef Chahor ◽  
Javier Casalí ◽  
Rafae Giménez

<p>Ephemeral gullies (EG) are linear erosion features located in swales where runoff concentrates during or immediately after rainfall events. EG are temporary because they are easily filled by conventional machinery and cause important soil losses in cultivated areas. Casalí et al. (1999) distinguished three types of EG: “classical”, formed by concentrated runoff flows within the same field where runoff started; “drainage”, created by concentrated flows draining areas upstream from the field; “discontinuity”, found in places where management practices create a sudden change in slope. There is still a great lack of knowledge about the true extent and importance of this EG. In this sense, the information obtained from aerial photographs can be of great value. The main objective of this work is to evaluate the possibility of making an exhaustive characterization of the space-time evolution of ephemeral gullies in a relatively large area from color aerial photographs. The effect of precipitation on the EG will be also analyzed.</p><p>The 570 ha study area is almost completely cultivated with winter cereals and located in the Pitillas district (Navarre). Climate is Continental Mediterranean (on average 550  mm yr<sup>-1</sup>). Soil (upper horizons) are loam–silty loam in texture.</p><p>EG within cultivated fields were located, classified and digitized using GIS interfaces over seven colour orthophotos (1:5000 with 0.5mx0.5m resolution) taken between 2003 and 2014. Gully length was determined after locating EG down and upstream ends. EG drainage areas and slopes were determined using a 2 m resolution DEM.</p><p>To determine EG volumes, an empirical power model for the study area defining the relationship between EG lengths and volumes was first obtained from previous field measurement, and then used for the EG lengths from this study. The corresponding erosion rates were also calculated.</p><p>57 small watersheds affected by EGs were identified, being 39 of them classified as drainage EGs, and the remaining 18 EGs as classic. 70% of the small watersheds were affected by EG only once. In remaining watersheds EG reappeared from twice to seven times. Therefore, it seems that the repeatability is not as high as thought.</p><p>The average erosion rate in classical EG is about 1.1 Kg m<sup>-2</sup> year<sup>-1</sup>. Previous assessments using accurate direct methods reported an average value of 0.8 Kg m<sup>-2</sup> year<sup>-1</sup> for very similar watersheds in the same area. Although it is not a conclusive proof, this findings indicate that both methods provide similar results.</p><p>A very high correlation (r<sup>2</sup>= 0.84) has been found between the length of the gullies formed in the study area and the total annual precipitation. It would follow that EG erosion would also be controlled by the overall amount of rainfall also in Mediterranean climates, and not only by high intensity-low frequency events.</p><p><strong>References</strong></p><ol><li>Casalí, J. J. López, J. V. Giráldez, 1999. Ephemeral gully erosion in Southern Navarra (Spain). CATENA 36: 65-84.</li> </ol>


Sign in / Sign up

Export Citation Format

Share Document