Fine roots determine soil infiltration potential than soil water content in semi-arid grassland soils

2019 ◽  
Vol 578 ◽  
pp. 124023 ◽  
Author(s):  
Zeng Cui ◽  
Gao-Lin Wu ◽  
Ze Huang ◽  
Yu Liu
Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


2009 ◽  
Vol 6 (5) ◽  
pp. 6425-6454
Author(s):  
H. Stephen ◽  
S. Ahmad ◽  
T. C. Piechota ◽  
C. Tang

Abstract. The Tropical Rainfall Measuring Mission (TRMM) carries aboard the Precipitation Radar (TRMMPR) that measures the backscatter (σ°) of the surface. σ° is sensitive to surface soil moisture and vegetation conditions. Due to sparse vegetation in arid and semi-arid regions, TRMMPR σ° primarily depends on the soil water content. In this study we relate TRMMPR σ° measurements to soil water content (ms) in Lower Colorado River Basin (LCRB). σ° dependence on ms is studied for different vegetation greenness values determined through Normalized Difference Vegetation Index (NDVI). A new model of σ° that couples incidence angle, ms, and NDVI is used to derive parameters and retrieve soil water content. The calibration and validation of this model are performed using simulated and measured ms data. Simulated ms is estimated using Variable Infiltration Capacity (VIC) model whereas measured ms is acquired from ground measuring stations in Walnut Gulch Experimental Watershed (WGEW). σ° model is calibrated using VIC and WGEW ms data during 1998 and the calibrated model is used to derive ms during later years. The temporal trends of derived ms are consistent with VIC and WGEW ms data with correlation coefficient (R) of 0.89 and 0.74, respectively. Derived ms is also consistent with the measured precipitation data with R=0.76. The gridded VIC data is used to calibrate the model at each grid point in LCRB and spatial maps of the model parameters are prepared. The model parameters are spatially coherent with the general regional topography in LCRB. TRMMPR σ° derived soil moisture maps during May (dry) and August (wet) 1999 are spatially similar to VIC estimates with correlation 0.67 and 0.76, respectively. This research provides new insights into Ku-band σ° dependence on soil water content in the arid regions.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1227
Author(s):  
Moein Farahnak ◽  
Keiji Mitsuyasu ◽  
Takuo Hishi ◽  
Ayumi Katayama ◽  
Masaaki Chiwa ◽  
...  

Tree root system development alters forest soil properties, and differences in root diameter frequency and root length per soil volume reflect differences in root system function. In this study, the relationship between vertical distribution of very fine root and soil water content was investigated in intact tree and cut tree areas. The vertical distribution of root density with different diameter classes (very fine <0.5 mm and fine 0.5–2.0 mm) and soil water content were examined along a slope with two coniferous tree species, Cryptomeria japonica (L.f.) D. Don and Chamaecyparis obtusa (Siebold et Zucc.) Endl. The root biomass and length density of very fine roots at soil depth of 0–5 cm were higher in the Ch. obtusa intact tree plot than in the Cr. japonica intact plot. Tree cutting caused a reduction in the biomass and length of very fine roots at 0–5 cm soil depth, and an increment in soil water content at 5–30 cm soil depth of the Ch. obtusa cut tree plot one year after cutting. However, very fine root density of the Cr. japonica intact tree plot was quite low and the soil water content in post-harvest areas did not change. The increase in soil water content at 5–30 cm soil depth of the Ch. obtusa cut tree plot could be caused by the decrease in very fine roots at 0–5 cm soil depth. These results suggest that the distribution of soil water content was changed after tree cutting of Ch. obtusa by the channels generated by the decay of very fine roots. It was also shown that differences in root system characteristics among different tree species affect soil water properties after cutting.


2021 ◽  
Vol 208 ◽  
pp. 104869
Author(s):  
Joseph A. Burke ◽  
Katie L. Lewis ◽  
Glen L. Ritchie ◽  
Paul B. DeLaune ◽  
J. Wayne Keeling ◽  
...  

2014 ◽  
Vol 2 (7) ◽  
pp. 261-271
Author(s):  
Koech O. K. ◽  
Kinuthia R. N. ◽  
Mureithi S. M. ◽  
Karuku G.N. ◽  
Wanjogu R.

2022 ◽  
Vol 53 ◽  
Author(s):  
Marcos Makeison Moreira de Sousa ◽  
Eunice Maia de Andrade ◽  
Helba Araújo de Quairoz Palácio ◽  
Pedro Henrique Augusto Medeiros ◽  
Jacques Carvalho Ribeiro Filho

Sign in / Sign up

Export Citation Format

Share Document