Microstructure design and analysis of thermal interface materials using high heat- resistance natural fibers

Author(s):  
Hana Jung ◽  
Hak Jun Chung ◽  
Jaesang Yu
Author(s):  
Wei Yu ◽  
◽  
Changqing Liu ◽  
Lin Qiu ◽  
Ping Zhang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1890
Author(s):  
Monika Rdest ◽  
Dawid Janas

This perspective article describes the application opportunities of carbon nanotube (CNT) films for the energy sector. Up to date progress in this regard is illustrated with representative examples of a wide range of energy management and transformation studies employing CNT ensembles. Firstly, this paper features an overview of how such macroscopic networks from nanocarbon can be produced. Then, the capabilities for their application in specific energy-related scenarios are described. Among the highlighted cases are conductive coatings, charge storage devices, thermal interface materials, and actuators. The selected examples demonstrate how electrical, thermal, radiant, and mechanical energy can be converted from one form to another using such formulations based on CNTs. The article is concluded with a future outlook, which anticipates the next steps which the research community will take to bring these concepts closer to implementation.


FirePhysChem ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 8-20
Author(s):  
Xingyu Huo ◽  
Fanfan Wang ◽  
Liang Liang Niu ◽  
Ruijun Gou ◽  
Chaoyang Zhang

2021 ◽  
Vol 9 (3) ◽  
pp. 667
Author(s):  
Zhiwei Tu ◽  
Peter Setlow ◽  
Stanley Brul ◽  
Gertjan Kramer

Bacterial endospores (spores) are among the most resistant living forms on earth. Spores of Bacillus subtilis A163 show extremely high resistance to wet heat compared to spores of laboratory strains. In this study, we found that spores of B. subtilis A163 were indeed very wet heat resistant and released dipicolinic acid (DPA) very slowly during heat treatment. We also determined the proteome of vegetative cells and spores of B. subtilis A163 and the differences in these proteomes from those of the laboratory strain PY79, spores of which are much less heat resistant. This proteomic characterization identified 2011 proteins in spores and 1901 proteins in vegetative cells of B. subtilis A163. Surprisingly, spore morphogenic protein SpoVM had no homologs in B. subtilis A163. Comparing protein expression between these two strains uncovered 108 proteins that were differentially present in spores and 93 proteins differentially present in cells. In addition, five of the seven proteins on an operon in strain A163, which is thought to be primarily responsible for this strain’s spores high heat resistance, were also identified. These findings reveal proteomic differences of the two strains exhibiting different resistance to heat and form a basis for further mechanistic analysis of the high heat resistance of B. subtilis A163 spores.


2006 ◽  
Vol 37 (1) ◽  
pp. 418 ◽  
Author(s):  
Yoshiaki Watanabe ◽  
Ken-ichi Makita ◽  
Yasuyoshi Fujii ◽  
Hisanori Okada ◽  
Naoto Obara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document