scholarly journals Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials

2017 ◽  
Vol 7 (6) ◽  
pp. 589 ◽  
Author(s):  
Mohammed Saadah ◽  
Edward Hernandez ◽  
Alexander Balandin
2019 ◽  
Vol 6 (1) ◽  
pp. 2 ◽  
Author(s):  
Barath Kanna Mahadevan ◽  
Sahar Naghibi ◽  
Fariborz Kargar ◽  
Alexander A. Balandin

Temperature rise in multi-junction solar cells reduces their efficiency and shortens their lifetime. We report the results of the feasibility study of passive thermal management of concentrated multi-junction solar cells with the non-curing graphene-enhanced thermal interface materials. Using an inexpensive, scalable technique, graphene and few-layer graphene fillers were incorporated in the non-curing mineral oil matrix, with the filler concentration of up to 40 wt% and applied as the thermal interface material between the solar cell and the heat sink. The performance parameters of the solar cells were tested using an industry-standard solar simulator with concentrated light illumination at 70× and 200× suns. It was found that the non-curing graphene-enhanced thermal interface material substantially reduces the temperature rise in the solar cell and improves its open-circuit voltage. The decrease in the maximum temperature rise enhances the solar cell performance compared to that with the commercial non-cured thermal interface material. The obtained results are important for the development of the thermal management technologies for the next generation of photovoltaic solar cells.


Author(s):  
Wei Yu ◽  
◽  
Changqing Liu ◽  
Lin Qiu ◽  
Ping Zhang ◽  
...  

2019 ◽  
Vol 12 ◽  
pp. 80-85 ◽  
Author(s):  
Chang Ping Feng ◽  
Lu Bai ◽  
Rui-Ying Bao ◽  
Shi-Wei Wang ◽  
Zhengying Liu ◽  
...  

2014 ◽  
Vol 1039 ◽  
pp. 438-445 ◽  
Author(s):  
Ming Zhu Wang ◽  
Xing Xing ◽  
Wei Yu

Graphene, a two-dimensional nanocarbon material with unique planar structure, has wide application prospects in the field of thermal management due to its excellent thermal conductive property. The test methods for thermal conductivity of graphene are described. Research progress in the application of graphene in the field of thermal management is reviewed. Especially, the application of graphene in nanofluids, thermal interface materials and thermal conductive composites is described in detail.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000079-000086
Author(s):  
Tim Jensen ◽  
David L. Saums

Summary An important determinant of device reliability is operating temperature control. Maintaining a semiconductor device at or below the maximum rated junction temperature (Tj) is accomplished through careful thermal management design and selection of well-performing thermal interface materials (TIM) that minimize efficiency losses in packaging and between the semiconductor device package and a heat sink or liquid cold plate. Thermal management design is increasingly important in harsh operating environments, especially where higher operating temperatures are specified. Minimizing thermal resistances through each semiconductor package material stack and at the external case or package surface of the device are important aspects of maintaining operating temperatures within specified maximum values. In addition, certain semiconductor devices require an electrical path from the semiconductor case to an external component. Maximizing electrical performance of gallium nitride (GaN) RF semiconductors is critical to system performance, as a primary example. The on-going transition within RF and microwave systems from silicon to GaN devices has increased the need for thermal interface materials which offer both improved thermal performance and electrical conductivity. Additionally, GaN semiconductor die are typically smaller in footprint and, even with equivalent power dissipation values, therefore may operate with higher heat flux values that require greater attention to proper thermal solution design. To address such needs, recently-developed forms of metallic TIM preforms are available for integrated circuits, power semiconductors, and RF devices. Understanding how these materials may be tested and selected for specific application requirements is the subject of this discussion.


2020 ◽  
Vol 22 ◽  
pp. 100528
Author(s):  
Chang-Ping Feng ◽  
Lu-Yao Yang ◽  
Jie Yang ◽  
Lu Bai ◽  
Rui-Ying Bao ◽  
...  

Author(s):  
S. Mahajan ◽  
G. Subbarayan ◽  
B. G. Sammakia ◽  
W. Jones

Thermal management in microelectronics is an important issue due to the projected increase in power dissipation in the electronic devices over the next 5–10 years. We seek a solution to this problem by exploring carbon nanotube-polymer matrix composites for use as thermal interface materials because of the reported high thermal conductivity and other remarkable thermal and mechanical properties of nanotubes. As an intermediate step to finding the composites’ conductivity, it is important to validate the use carbon nanotubes by calculating its diffusivity and conductivity first. This would facilitate later the estimating of important design parameters for thermal interface materials such as thermal diffusivity and conductivity. As polymer molecules are on the same size scale as nanotubes and the interaction at the polymer/nanotube interface is highly dependent on the molecular structure and bonding, Molecular Dynamic (MD) simulation is used to estimate the nano-scale properties. In this paper, until cell model consisting of a carbon nanotube was used and the diffusivity was measured. These findings would have implications in improving the thermal management efficiency and consequently improve the performance and reliability of future microelectronic devices.


Thermal management is one of the most critical issues in electronics due to increasing power densities. This problem is getting even worse for small and sophisticated devices due to air gaps present between the heat source and heat sink. Thermal interface materials (TIM) are used to reduce the air gaps and significantly increase the heat transfer capability of the system. A high-thermal-performance, cost-effective and reliable TIM would be needed to dissipate the generated heat, which could enable significant reductions in weight, volume and cost of the thermal management system. In this study a number of different nanostructured materials are reviewed for potential use as a filler material in our effort to develop advanced TIM composite. Some of the candidate filler materials considered is Carbon Nanotubes, Graphene and Few Layer Graphene (FLG), Boron Nitride Nanotubes (BNNT) and Boron Nitride Nanomesh (BNNM) and Boron Arsenide (BAs). Objective is to identify composition of boron arsenide as filler in polymer-nanostructured material composite TIM for high heat flux applications. In order to design boron-arsenide-based TIM composite with enhanced effective thermal conductivity, a number of metallic and nonmetallic base-filler material composites are considered with varying filler fractions. Empirical mixture models based on effective medium theories (EMT) are evaluated for estimating effective conductivity of the two-component boron arsenide-filler composite TIM structure.


2018 ◽  
Vol 6 (39) ◽  
pp. 10611-10617 ◽  
Author(s):  
Liuying Zhao ◽  
Huiqiang Liu ◽  
Xuechen Chen ◽  
Sheng Chu ◽  
Han Liu ◽  
...  

Thermal interface material (TIMs) pads/sheets with both high elasticity and low thermal resistance are indispensable components for thermal management.


Author(s):  
Corey Thompson ◽  
Matt Gordon ◽  
Ajay P. Malshe ◽  
Deep Gupta

Superconducting integrated circuits (SCICs) require cooling to about 4 K for proper circuit operation. Current efforts are being made to transfer SCIC technology from lab experiments to viable consumer and military products. In order for this to be feasible, SCICs must function in cryogen-free closed-cycle refrigerator (or cryocooler) based systems. Design constraints for SCICs utilizing rapid single-flux-quantum (RSFQ) logic require a maximum temperature gradient across the package of less than 50 mK for proper circuit operation when implemented in cryocooler mounted systems. Also, to achieve increased functional density and decreased signal delays, it is desired to implement multichip module (MCM) SCICs in which RSFQ signals are passed from chip-to-chip through a common MCM substrate. Satisfying these constraints requires innovative packaging and thermal interface materials for harsh environment packaging (low temperature, high vacuum). The objective of this modeling work is to: explain the role of underfill in harsh environment cryogenic packages, explore the role of polymers and nanocomposites in filling this role, and anticipate the role of manufacturing defects on thermal management of 4 K packages. A characteristic model is developed in COMSOL MultiPhysics that allows for investigation of the dependence of temperature gradients across the package on these variables. It is found that at 4 K thermal interface resistances act as major bottlenecks to heat removal from the active die. It is also shown that as bump diameter decreases below 100 microns due to device miniaturization, the need for effective thermal interface materials is exacerbated. A novel nanoengineered cryogenic adhesive (nECA) comprised of nanoparticles dispersed in an epoxy matrix is proposed to act as a heat transfer medium between chip and substrate. Incorporation of nECA into the FEA model of a single chip package reduces the overall temperature gradient from 78 mK to 44 mK. This advance in thermal management of low temperature SCICs is paramount for the advancement of MCM packaging requiring efficient removal of heat from densely packaged chips.


Sign in / Sign up

Export Citation Format

Share Document