scholarly journals Autonomic computing in manufacturing process coordination in industry 4.0 context

2020 ◽  
Vol 19 ◽  
pp. 100159 ◽  
Author(s):  
Manuel Sanchez ◽  
Ernesto Exposito ◽  
Jose Aguilar
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Julio Takashi Cavata ◽  
Alexandre Augusto Massote ◽  
Rodrigo Filev Maia ◽  
Fábio Lima

Abstract: Advanced Manufacturing or Industry 4.0 concepts bring new advances and challenges to current industrial processes. Such concepts are not always well understood and their results in terms of production performance may not be clear. This work proposes a comparison between a traditional manufacturing process and an advanced manufacturing process, both modelled by a multiagent society. In the traditional manufacturing simulation, the agents follow the defined times of each process, including the maintenance times. In the advanced manufacturing simulation, the decision about when to stop a piece of equipment for maintenance is defined by the agent according to data received from sensors and the definitions of the process. The results indicate a significant improvement in equipment usage and consequently higher production in the same time interval. The process simulation clearly indicates that the application of advanced manufacturing concepts in industry is relevant in order to increase the efficiency of production processes. Among the main concepts introduced in advanced manufacturing models are the Internet of Things (IoT), Cyber-Physical Systems (CPSs), and Artificial Intelligence (AI). The models generated are computationally simulated using an agent-based simulation method from the software AnyLogic. The results obtained should contribute to encouraging small and medium sized enterprises to adopt the concepts of Industry 4.0 in their businesses.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 325
Author(s):  
Andrea Vaclavova ◽  
Peter Strelec ◽  
Tibor Horak ◽  
Michal Kebisek ◽  
Pavol Tanuska ◽  
...  

Today, Industrial Internet of Things (IIoT) devices are very often used to collect manufacturing process data. The integration of industrial data is increasingly being promoted by the Open Platform Communications United Architecture (OPC UA). However, available IIoT devices are limited by the features they provide; therefore, we decided to design an IIoT device taking advantage of the benefits arising from OPC UA. The design procedure was based on the creation of sequences of steps resulting in a workflow that was transformed into a finite state machine (FSM) model. The FSM model was transformed into an OPC UA object, which was implemented in the proposed IIoT. The OPC UA object makes it possible to monitor events and provide important information based on a client’s criteria. The result was the design and implementation of an IIoT device that provides improved monitoring and data acquisition, enabling improved control of the manufacturing process.


Author(s):  
Charly Foissac ◽  
Alain Daidie ◽  
Stephane Segonds ◽  
Clément Chirol

AbstractSmart tightening development is part of the Industry 4.0 transformation with the introduction of smart tools, and preload in bolted assemblies is of major interest in today’s aircraft manufacturing process. So far, it has been difficult to estimate the importance of each parameter for tightening process quality, mainly because of the large number of combinations and configurations that exist.The present work aims at evaluating the effects and the interactions between different parameters that have to be taken in consideration in future torquing strategy. Many experimental tests have been conducted on an Automatica test bench using a Taguchi strategy and an analysis of the first main results is now presented, highlighting the complexity of the phenomena studied.All these points will help us to better understand tightening, so as to improve performance during installation, maintenance and repair.


Author(s):  
Parikshit Mehta ◽  
Prahalada Rao ◽  
Zhenhua (David) Wu ◽  
Vukica Jovanović ◽  
Olga Wodo ◽  
...  

With the advances in automation technologies, data science, process modeling and process control, industries worldwide are at the precipice of what is described as the fourth industrial revolution (Industry 4.0). This term was coined in 2011 by the German federal government to define their strategy related to high tech industry [1], specifically multidisciplinary sciences involving physics-based process modeling, data science and machine learning, cyber-physical systems, and cloud computing coming together to drive operational excellence and support sustainable manufacturing. The boundaries between Information Technologies (I.T.) and Operation Technologies (O.T.) are quickly dissolving and the opportunities for taking lab-scale manufacturing science research to plant and enterprise wide deployment are better than ever before. There are still questions to be answered, such as those related to the future of manufacturing research and those related to meeting such demands with a highly skilled workforce. Furthermore, in this new environment it is important to understand how process modeling, monitoring, and control technologies will be transformed. The aim of the paper is to provide state-of-the-art review of Smart Manufacturing and Industry 4.0 within scope of process monitoring, modeling and control. This will be accomplished by giving comprehensive background review and discussing application of smart manufacturing framework to conventional (machining) and advanced (additive) manufacturing process case studies. By focusing on process modeling, monitoring, analytics, and control within the larger vision of Industry 4.0, this paper will provide a directed look at the efforts in these areas, and identify future research directions that would accelerate the pace of implementation in advanced manufacturing industry.


2022 ◽  
Author(s):  
Serafino Caruso ◽  
Luigino Filice

Abstract The evolution of grain size and component mechanical behaviour are fundamental aspects to analyse and control when manufacturing processes are considered. In this context, severe plastic deformation (SPD) processes, in which a high shear strain is imposed on the material, are recognized as the main techniques to achieve microstructural changes and material strengthening by the recrystallization, attracting both academic and industrial investigation activities. At the same time, nowadays, sustainable manufacturing design is one of the main responsibilities of the researchers looking at UN2030 agenda and the modern industrial paradigms. In this paper a new severe SPD process is proposed with the aim to steer manufacturing to fourth industrial revolution using some of Industry 4.0 pillars. In particular, additive manufacturing (AM) and numerical simulations were setup as controlling and monitoring techniques in manufacturing process of wires.Strengthening effect (yield and ultimate tensile strength, plasticity and hardness) and microstructural evolution (continuous dynamic recrystallization -CDRX-) due to severe plastic deformation were experimentally analysed and numerically investigated by an innovative finite element (FE) model able to validate the effectiveness of a properly modified process for ultra-fine aluminium alloy AA6101 wires production designed with the aim to avoid any post manufacturing costly thermal treatment.The study provides an accurate experimental study and numerical prediction of the thermo-mechanical and microstructural phenomena that occur during an advanced large plastic deformation process; it shows how the combination of smart manufacturing and simulations control represents the key to renew the traditional manufacturing methods in the perspective of the Industry 4.0, connecting and integrating the manufacturing process for the industrial evolution in production.


Sign in / Sign up

Export Citation Format

Share Document