Reproducibility of 10x Genomics single cell RNA sequencing method in the immune cell environment

2022 ◽  
pp. 113227
Author(s):  
Gloria Kraus ◽  
Marc Weigelt ◽  
Susanne Reinhardt ◽  
Andreas Petzold ◽  
Andreas Dahl ◽  
...  
2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Andrew Donson ◽  
Kent Riemondy ◽  
Sujatha Venkataraman ◽  
Ahmed Gilani ◽  
Bridget Sanford ◽  
...  

Abstract We explored cellular heterogeneity in medulloblastoma using single-cell RNA sequencing (scRNAseq), immunohistochemistry and deconvolution of bulk transcriptomic data. Over 45,000 cells from 31 patients from all main subgroups of medulloblastoma (2 WNT, 10 SHH, 9 GP3, 11 GP4 and 1 GP3/4) were clustered using Harmony alignment to identify conserved subpopulations. Each subgroup contained subpopulations exhibiting mitotic, undifferentiated and neuronal differentiated transcript profiles, corroborating other recent medulloblastoma scRNAseq studies. The magnitude of our present study builds on the findings of existing studies, providing further characterization of conserved neoplastic subpopulations, including identification of a photoreceptor-differentiated subpopulation that was predominantly, but not exclusively, found in GP3 medulloblastoma. Deconvolution of MAGIC transcriptomic cohort data showed that neoplastic subpopulations are associated with major and minor subgroup subdivisions, for example, photoreceptor subpopulation cells are more abundant in GP3-alpha. In both GP3 and GP4, higher proportions of undifferentiated subpopulations is associated with shorter survival and conversely, differentiated subpopulation is associated with longer survival. This scRNAseq dataset also afforded unique insights into the immune landscape of medulloblastoma, and revealed an M2-polarized myeloid subpopulation that was restricted to SHH medulloblastoma. Additionally, we performed scRNAseq on 16,000 cells from genetically engineered mouse (GEM) models of GP3 and SHH medulloblastoma. These models showed a level of fidelity with corresponding human subgroup-specific neoplastic and immune subpopulations. Collectively, our findings advance our understanding of the neoplastic and immune landscape of the main medulloblastoma subgroups in both humans and GEM models.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoping Hong ◽  
Shuhui Meng ◽  
Donge Tang ◽  
Tingting Wang ◽  
Liping Ding ◽  
...  

ObjectivePrimary Sjögren’s syndrome (pSS) is a systemic autoimmune disease, and its pathogenetic mechanism is far from being understood. In this study, we aimed to explore the cellular and molecular mechanisms that lead to pathogenesis of this disease.MethodsWe applied single-cell RNA sequencing (scRNA-seq) to 57,288 peripheral blood mononuclear cells (PBMCs) from five patients with pSS and five healthy controls. The immune cell subsets and susceptibility genes involved in the pathogenesis of pSS were analyzed. Flow cytometry was preformed to verify the result of scRNA-seq.ResultsWe identified two subpopulations significantly expand in pSS patients. The one highly expressing cytotoxicity genes is named as CD4+ CTLs cytotoxic T lymphocyte, and another highly expressing T cell receptor (TCR) variable gene is named as CD4+ TRAV13-2+ T cell. Flow cytometry results showed the percentages of CD4+ CTLs, which were profiled with CD4+ and GZMB+ staining; the total T cells of 10 patients with pSS were significantly higher than those of 10 healthy controls (P= 0.008). The expression level of IL-1β in macrophages, TCL1A in B cells, as well as interferon (IFN) response genes in most cell subsets was upregulated in the patients with pSS. Susceptibility genes including HLA-DRB5, CTLA4, and AQP3 were highly expressed in patients with pSS.ConclusionsOur data revealed disease-specific immune cell subsets and provided some potential new targets of pSS. Specific expansion of CD4+ CTLs may be involved in the pathogenesis of pSS, which might give valuable insights for therapeutic interventions of pSS.


2018 ◽  
Vol 9 ◽  
Author(s):  
Akira Nguyen ◽  
Weng Hua Khoo ◽  
Imogen Moran ◽  
Peter I. Croucher ◽  
Tri Giang Phan

2019 ◽  
Vol 36 (2) ◽  
pp. 546-551 ◽  
Author(s):  
Kyungsoo Kim ◽  
Sunmo Yang ◽  
Sang-Jun Ha ◽  
Insuk Lee

Abstract Motivation The immune system has diverse types of cells that are differentiated or activated via various signaling pathways and transcriptional regulation upon challenging conditions. Immunophenotyping by flow and mass cytometry are the major approaches for identifying key signaling molecules and transcription factors directing the transition between the functional states of immune cells. However, few proteins can be evaluated by flow cytometry in a single experiment, preventing researchers from obtaining a comprehensive picture of the molecular programs involved in immune cell differentiation. Recent advances in single-cell RNA sequencing (scRNA-seq) have enabled unbiased genome-wide quantification of gene expression in individual cells on a large scale, providing a new and versatile analytical pipeline for studying immune cell differentiation. Results We present VirtualCytometry, a web-based computational pipeline for evaluating immune cell differentiation by exploiting cell-to-cell variation in gene expression with scRNA-seq data. Differentiating cells often show a continuous spectrum of cellular states rather than distinct populations. VirtualCytometry enables the identification of cellular subsets for different functional states of differentiation based on the expression of marker genes. Case studies have highlighted the usefulness of this subset analysis strategy for discovering signaling molecules and transcription factors for human T-cell exhaustion, a state of T-cell dysfunction, in tumor and mouse dendritic cells activated by pathogens. With more than 226 scRNA-seq datasets precompiled from public repositories covering diverse mouse and human immune cell types in normal and disease tissues, VirtualCytometry is a useful resource for the molecular dissection of immune cell differentiation. Availability and implementation www.grnpedia.org/cytometry


2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Yohei Sasagawa ◽  
Hiroki Danno ◽  
Hitomi Takada ◽  
Masashi Ebisawa ◽  
Kaori Tanaka ◽  
...  

2020 ◽  
Vol 31 (9) ◽  
pp. 1977-1986 ◽  
Author(s):  
Andrew F. Malone ◽  
Haojia Wu ◽  
Catrina Fronick ◽  
Robert Fulton ◽  
Joseph P. Gaut ◽  
...  

BackgroundIn solid organ transplantation, donor-derived immune cells are assumed to decline with time after surgery. Whether donor leukocytes persist within kidney transplants or play any role in rejection is unknown, however, in part because of limited techniques for distinguishing recipient from donor cells.MethodsWhole-exome sequencing of donor and recipient DNA and single-cell RNA sequencing (scRNA-seq) of five human kidney transplant biopsy cores distinguished immune cell contributions from both participants. DNA-sequence comparisons used single nucleotide variants (SNVs) identified in the exome sequences across all samples.ResultsAnalysis of expressed SNVs in the scRNA-seq data set distinguished recipient versus donor origin for all 81,139 cells examined. The leukocyte donor/recipient ratio varied with rejection status for macrophages and with time post-transplant for lymphocytes. Recipient macrophages displayed inflammatory activation whereas donor macrophages demonstrated antigen presentation and complement signaling. Recipient-origin T cells expressed cytotoxic and proinflammatory genes consistent with an effector cell phenotype, whereas donor-origin T cells appeared quiescent, expressing oxidative phosphorylation genes. Finally, both donor and recipient T cell clones within the rejecting kidney suggested lymphoid aggregation. The results indicate that donor-origin macrophages and T cells have distinct transcriptional profiles compared with their recipient counterparts, and that donor macrophages can persist for years post-transplantation.ConclusionsAnalysis of single nucleotide variants and their expression in single cells provides a powerful novel approach to accurately define leukocyte chimerism in a complex organ such as a transplanted kidney, coupled with the ability to examine transcriptional profiles at single-cell resolution.PodcastThis article contains a podcast at https://www.asn-online.org/media/podcast/JASN/2020_08_07_JASN2020030326.mp3


Author(s):  
Feiyang Ma ◽  
Matteo Pellegrini

Abstract Motivation Cell type identification is one of the major goals in single cell RNA sequencing (scRNA-seq). Current methods for assigning cell types typically involve the use of unsupervised clustering, the identification of signature genes in each cluster, followed by a manual lookup of these genes in the literature and databases to assign cell types. However, there are several limitations associated with these approaches, such as unwanted sources of variation that influence clustering and a lack of canonical markers for certain cell types. Here, we present ACTINN (Automated Cell Type Identification using Neural Networks), which employs a neural network with three hidden layers, trains on datasets with predefined cell types and predicts cell types for other datasets based on the trained parameters. Results We trained the neural network on a mouse cell type atlas (Tabula Muris Atlas) and a human immune cell dataset, and used it to predict cell types for mouse leukocytes, human PBMCs and human T cell sub types. The results showed that our neural network is fast and accurate, and should therefore be a useful tool to complement existing scRNA-seq pipelines. Availability and implementation The codes and datasets are available at https://figshare.com/articles/ACTINN/8967116. Tutorial is available at https://github.com/mafeiyang/ACTINN. All codes are implemented in python. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document