Salmonella Typhimurium fepB negatively regulates C. elegans behavioral plasticity

Author(s):  
Swarupa Mallick ◽  
Neha Mishr ◽  
Bedanta Kumar Barik ◽  
Vidya Devi Negi
2021 ◽  
Vol 14 ◽  
Author(s):  
Umer Saleem Bhat ◽  
Navneet Shahi ◽  
Siju Surendran ◽  
Kavita Babu

One of the reasons that most multicellular animals survive and thrive is because of the adaptable and plastic nature of their nervous systems. For an organism to survive, it is essential for the animal to respond and adapt to environmental changes. This is achieved by sensing external cues and translating them into behaviors through changes in synaptic activity. The nervous system plays a crucial role in constantly evaluating environmental cues and allowing for behavioral plasticity in the organism. Multiple neurotransmitters and neuropeptides have been implicated as key players for integrating sensory information to produce the desired output. Because of its simple nervous system and well-established neuronal connectome, C. elegans acts as an excellent model to understand the mechanisms underlying behavioral plasticity. Here, we critically review how neuropeptides modulate a wide range of behaviors by allowing for changes in neuronal and synaptic signaling. This review will have a specific focus on feeding, mating, sleep, addiction, learning and locomotory behaviors in C. elegans. With a view to understand evolutionary relationships, we explore the functions and associated pathophysiology of C. elegans neuropeptides that are conserved across different phyla. Further, we discuss the mechanisms of neuropeptidergic signaling and how these signals are regulated in different behaviors. Finally, we attempt to provide insight into developing potential therapeutics for neuropeptide-related disorders.


2017 ◽  
Vol 114 (16) ◽  
pp. 4195-4200 ◽  
Author(s):  
Lorenz A. Fenk ◽  
Mario de Bono

Animals adjust their behavioral priorities according to momentary needs and prior experience. We show that Caenorhabditis elegans changes how it processes sensory information according to the oxygen environment it experienced recently. C. elegans acclimated to 7% O2 are aroused by CO2 and repelled by pheromones that attract animals acclimated to 21% O2. This behavioral plasticity arises from prolonged activity differences in a circuit that continuously signals O2 levels. A sustained change in the activity of O2-sensing neurons reprograms the properties of their postsynaptic partners, the RMG hub interneurons. RMG is gap-junctionally coupled to the ASK and ADL pheromone sensors that respectively drive pheromone attraction and repulsion. Prior O2 experience has opposite effects on the pheromone responsiveness of these neurons. These circuit changes provide a physiological correlate of altered pheromone valence. Our results suggest C. elegans stores a memory of recent O2 experience in the RMG circuit and illustrate how a circuit is flexibly sculpted to guide behavioral decisions in a context-dependent manner.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5598
Author(s):  
Marie Lang ◽  
Aude Montjarret ◽  
Emmanuel Duteil ◽  
Gilles Bedoux

The regulation of intestinal colonization in livestock by means of non-bactericidal additives is an important management lever for zoonotic bacteria such as Salmonella spp. Caenorhabditis elegans is proposed here as a model for the evaluation of five essential oils (EOs) as anti-colonization products against Salmonella Typhimurium. An evaluation of the toxicity of EOs for C. elegans showed LD50 values ranging from 74.5 ± 9.6 µg/mL for Cinnamomum cassia (CEO) to 271.6 ± 14.9 µg/mL for Syzygium aromaticum (SyEO). Both EOs significantly inhibited bacterial colonization in the digestive tract of C. elegans with reductions of 0.88 and 0.70 log CFU/nematode at nontoxic concentrations of 50 µg/mL and 150 µg/mL, respectively. With the minimal bactericidal concentrations of CEO and SyEO against S. Typhimurium being 312.5 µg/mL and 625 µg/mL, respectively, an antibacterial effect can be excluded to explain the inhibition of the bacterial load. The anti-colonizing activity of these two EOs could, however, be related to an inhibition of the swimming motility, which was significantly reduced by 23.47% for CEO at 50 µg/mL and 19.56% for SyEO at 150 µg/mL. This study shows the potential of C. elegans as a predictive in vivo model of anti-colonizing activities that is suitable for the evaluation of essential oils.


2016 ◽  
Author(s):  
Veronika Kravtsov ◽  
Meital Oren-Suissa ◽  
Benjamin Podbilewicz

AbstractThe aging brain undergoes structural changes, affecting brain homeostasis, neuronal function and consequently cognition. The complex architecture of dendritic arbors poses a challenge to understanding age-dependent morphological alterations, behavioral plasticity and remodeling following brain injury. Here, we use the PVD polymodal neurons of C. elegans as a model to study how aging affects neuronal plasticity. Using confocal live imaging of C. elegans PVD neurons, we demonstrate age-related progressive morphological alterations of intricate dendritic arbors. We show that insulin/IGF-1 receptor mutations (daf-2) fail to inhibit the progressive morphological aging of dendrites and do not prevent the minor decline in response to harsh touch during aging. We uncovered that PVD aging is characterized by a major decline in regenerative potential of dendrites following experimental laser dendrotomy. Furthermore, the remodeling of transected dendritic trees via AFF-1-mediated self-fusion can be restored in old animals by DAF-2 insulin/IGF-1 receptor mutations, and can be differentially reestablished by ectopic expression of AFF-1 fusion protein (fusogen). Thus, AFF-1 fusogen ectopically expressed in the PVD and mutations in DAF-2/IGF-1R, differentially rejuvenate some aspects of dendritic regeneration following injury.Summary statementEctopic expression of AFF-1 fusogen or low activity of IGF-1R/DAF-2 rejuvenate the regeneration potential of dendrites following injury in aging C. elegans


2006 ◽  
Vol 9 (12) ◽  
pp. 1499-1505 ◽  
Author(s):  
David Biron ◽  
Mayumi Shibuya ◽  
Christopher Gabel ◽  
Sara M Wasserman ◽  
Damon A Clark ◽  
...  

2011 ◽  
Vol 74 (1) ◽  
pp. 86-93 ◽  
Author(s):  
CHUNYANG WANG ◽  
JINQUAN WANG ◽  
JOSHUA GONG ◽  
HAI YU ◽  
JENNIFER C. PACAN ◽  
...  

Host-specific probiotics have been used to control enteric pathogens, including foodborne pathogens, in food animal production. However, evaluation of the efficacy of these probiotics requires costly in vivo assays in the target animal. The nematode Caenorhabditis elegans has been used for prescreening of antimicrobial agents and for studies of host-pathogen interactions. In the present study, 17 Lactobacillus isolates from chicken and pig intestines were tested with C. elegans, and the ability of these isolates to prevent death from Salmonella infection was variable. Two Lactobacillus isolates (S64, which gave full protection, and CL11, which gave no protection) were further studied. Both isolates exhibited a similar colonization profile in the C. elegans intestine. Although different culture fractions of CL11 were not protective, both live and heat-killed S64 cells provided full or partial protection of C. elegans from death caused by Salmonella infection. In contrast, different culture fractions from both isolates had similar effects on the colonization of the nematode intestine by Salmonella Typhimurium DT104. Our preliminary results from a pig performance trial revealed a correlation between the degree of protection in the C. elegans survival assay and the performance of 35-day-old weaned piglets that were treated with the same Lactobacillus isolates, suggesting that C. elegans can be used as a laboratory animal model for preselecting probiotics for control of Salmonella infections.


2011 ◽  
Vol 71 ◽  
pp. e40
Author(s):  
Hirofumi Kunitomo ◽  
Hirofumi Sato ◽  
Ryo Iwata ◽  
Takeshi Adachi ◽  
Hayao Ohno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document