Synthesis, reactivity, X-ray characterization and docking studies of N7/N9-(2-pyrimidyl)-adenine derivatives

2020 ◽  
Vol 203 ◽  
pp. 110879 ◽  
Author(s):  
Daniel Martínez ◽  
Adriá Pérez ◽  
Santiago Cañellas ◽  
Ivan Silió ◽  
Aida Lancho ◽  
...  
Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2418
Author(s):  
Zuo-Peng Zhang ◽  
Ze-Fa Yin ◽  
Jia-Yue Li ◽  
Zhi-Peng Wang ◽  
Qian-Jie Wu ◽  
...  

To find novel human carbonic anhydrase (hCA) inhibitors, we synthesized thirteen compounds by combining thiazolidinone with benzenesulfonamide. The result of the X-ray single-crystal diffraction experiment confirmed the configuration of this class of compounds. The enzyme inhibition assays against hCA II and IX showed desirable potency profiles, as effective as the positive controls. The docking studies revealed that compounds (2) and (7) efficiently bound in the active site cavity of hCA IX by forming sufficient interactions with active site residues. The fragment of thiazolidinone played an important role in the binding of the molecules to the active site.


2018 ◽  
Vol 73 (6) ◽  
pp. 369-375 ◽  
Author(s):  
Farzin Marandi ◽  
Keyvan Moeini ◽  
Fereshteh Alizadeh ◽  
Zahra Mardani ◽  
Ching Kheng Quah ◽  
...  

AbstractA mixed ligand zinc coordination polymer, {Zn(μ-DPE)(DBM)2}n (1) (HDBM: dibenzoylmethane and DPE: (E)-1,2-di(pyridin-4-yl)ethene), was prepared and identified by elemental analysis, FT-IR, 1H NMR spectroscopy and single-crystal X-ray diffraction. In the 1D linear coordination polymer of 1, the zinc atom has a ZnN2O4 environment with octahedral geometry. These complex units are linked by the bridging of the planar N2 donor DPE ligands. In the coordination network of complex 1, in addition to the hydrogen bonds, the network is more stabilized by π–π stacking interactions between pyridine and β-diketone moieties of the ligands. These interactions increase the ability of the compound to interact with biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS and Top II) as investigated by docking calculations.


2021 ◽  
pp. 132017
Author(s):  
Mohammed Salah Ayoup ◽  
Saied M. Soliman ◽  
Matti Haukka ◽  
Marwa F Harras ◽  
Nagwan.G.El Menofy ◽  
...  

2019 ◽  
Vol 25 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Li Qiao ◽  
Peng-Peng Cai ◽  
Zhong-Hua Shen ◽  
Hong-Ke Wu ◽  
Cheng-Xia Tan ◽  
...  

AbstractTwo pyrazol-4-carboxamides, 3-(difluoromethyl)-N-(mesitylcarbamoyl)-1-methyl-1H-pyrazole-4-carboxa-mide (7a) and 3-(difluoromethyl)-N-((3,5-dimethylphenyl) carbamoyl)-1-methyl-1H-pyrazole-4-carboxamide (7b) were synthesized and their structures were confirmed by the aid of 1H NMR and HRMS analyses. The structure of the pyrazole-4-carboxamide, 7a was also determined by X-ray diffraction. The preliminary activity results demonstrate that these two compounds exhibit good inhibitory activity against Botrytis cinerea. Further docking results indicated that the key active group is difluoromethyl pyrazole moiety.


2020 ◽  
Vol 118 (3) ◽  
pp. 503a
Author(s):  
Dennis J. Michalak ◽  
Ellen Lorimer ◽  
Bethany Unger ◽  
Carol L. Williams ◽  
Frank Heinrich ◽  
...  

2019 ◽  
Vol 75 (7) ◽  
pp. 951-959 ◽  
Author(s):  
Zahra Mardani ◽  
Mohammad Hakimi ◽  
Keyvan Moeini ◽  
Fabian Mohr

The reaction between 2-[2-(aminoethyl)amino]ethanol and pyridine-2-carbaldehyde in a 1:2 molar ratio affords a mixture containing 2-({2-[(pyridin-2-ylmethylidene)amino]ethyl}amino)ethanol (PMAE) and 2-[2-(pyridin-2-yl)oxazolidin-3-yl]-N-(pyridin-2-ylmethylidene)ethanamine (POPME). Treatment of this mixture with copper(II) chloride or cadmium(II) chloride gave trichlorido[(2-hydroxyethyl)({2-[(pyridin-2-ylmethylidene)amino]ethyl})azanium]copper(II) monohydrate, [Cu(C10H16N3O)Cl3]·H2O or [Cu(HPMAE)Cl3]·H2O, 1, and dichlorido{2-[2-(pyridin-2-yl)oxazolidin-3-yl]-N-(pyridin-2-ylmethylidene)ethanamine}cadmium(II), [CdCl2(C16H18N4O)] or [CdCl2(POPME)], 2, which were characterized by elemental analysis, FT–IR, Raman and 1H NMR spectroscopy and single-crystal X-ray diffraction. PMAE is potentially a tetradentate N3O-donor ligand but coordinates to copper here as an N2 donor. In the structure of 1, the geometry around the Cu atom is distorted square pyramidal. In 2, the Cd atom has a distorted octahedral geometry. In addition to the hydrogen bonds, there are π–π stacking interactions between the pyridine rings in the crystal packing of 1 and 2. The ability of PMAE, POPME and 1 to interact with ten selected biomolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II and B-DNA) was investigated by docking studies and compared with doxorubicin.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4471 ◽  
Author(s):  
Ahmed T. A. Boraei ◽  
Hazem A. Ghabbour ◽  
Mohamed S. Gomaa ◽  
El Sayed H. El Ashry ◽  
Assem Barakat

A series of triazolo-thiadiazepines 4a–k were synthesized with excellent yields using dehydrated PTSA as a catalyst in toluene. Two triazolo-thiadiazines were obtained; 8a was formed directly by reflux in ethanol, whereas, PTSA promoted the formation of 8b. The molecular structure of the formed triazolo-thiadiazepines is identical to the imine-form 4a–k and not the enamine-tautomer 6a–k. The structures of the newly synthesized triazolo-thiadiazepines 4a–k and triazolo-thiadiazines 8a–b were elucidated using NMR (1H, and 13C), 2D NMR, HRMS, and X-ray single crystal. Furthermore, 4a was deduced using X-ray single crystal diffraction analysis. These new thiadiazepine hits represent an optimized series of previously synthesized indole-triazole derivatives for the inhibition of EGFR. The cytotoxicity activity against two cancer cell lines including human liver cancer (HEPG-2) and breast cancer (MCF-7) was promising, with IC50 between 12.9 to 44.6 µg/mL and 14.7 to 48.7 µg/mL for the tested cancer cell lines respectively, compared to doxorubicin (IC50 4.0 µg/mL). Docking studies revealed that the thiadiazepine scaffold presented a suitable anchor, allowing good interaction of the various binding groups with the enzyme binding regions and sub-pockets.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6033
Author(s):  
Zbigniew Karczmarzyk ◽  
Marta Swatko-Ossor ◽  
Waldemar Wysocki ◽  
Monika Drozd ◽  
Grazyna Ginalska ◽  
...  

A series of 1,2,4-triazole derivatives were synthesized and assigned as potential anti-tuberculosis substances. The molecular and crystal structures for the model compounds C1, C12, and C13 were determined using X-ray analysis. The X-ray investigation confirmed the synthesis pathway and the assumed molecular structures for analyzed 1,2,4-triazol-5-thione derivatives. The conformational preferences resulting from rotational degrees of freedom of the 1,2,4-triazole ring substituents were characterized. The lipophilicity (logP) and electronic parameters as the energy of frontier orbitals, dipole moments, NBO net charge distribution on the atoms, and electrostatic potential distribution for all structures were calculated at AM1 and DFT/B3LYP/6-311++G(d,p) level. The in vitro test was done against M. tuberculosis H37Ra, M. phlei, M. smegmatis, and M. timereck. The obtained results clearly confirmed the antituberculosis potential of compound C4, which turned out to be the most active against Mycobacterium H37Ra (MIC = 0.976 μg/mL), Mycobaterium pheli (MIC = 7.81 μg/mL) and Mycobacerium timereck (62.6 μg/mL). Satisfactory results were obtained with compounds C8, C11, C14 versus Myc. H37Ra, Myc. pheli, Myc. timereck (MIC = 31.25−62.5 μg/mL). The molecular docking studies were carried out for all investigated compounds using the Mycobacterium tuberculosis cytochrome P450 CYP121 enzyme as molecular a target connected with antimycobacterial activity.


Sign in / Sign up

Export Citation Format

Share Document