scholarly journals On the use of criteria based on the SMART acronym to assess quality of performance indicators for safety management in process industries

2021 ◽  
Vol 70 ◽  
pp. 104392
Author(s):  
Jon Tømmerås Selvik ◽  
Surbhi Bansal ◽  
Eirik Bjorheim Abrahamsen
Author(s):  
Dan Xin

The effective construction of safety monitoring system at construction site depends on perfect management system and advanced technical support. And the lack of information technology platform, resulting in reduced management efficiency, information is not accurate and other issues. Based on the construction site safety monitoring system to achieve the goal, to do a good job in advance prevention, to take the latest information collection technology RFID and BIM integrated comprehensive and effective monitoring of the construction site, constitute the main technology in the monitoring system, thus ensuring the construction site safety monitoring efficiency , Comprehensive, real-time, etc., on the management and technical two points to achieve the construction site safety monitoring, improve the quality of safety management.


Author(s):  
Seunghwa Park ◽  
Inhan Kim

Today’s buildings are getting larger and more complex. As a result, the traditional method of manually checking the design of a building is no longer efficient since such a process is time-consuming and laborious. It is becoming increasingly important to establish and automate processes for checking the quality of buildings. By automatically checking whether buildings satisfy requirements, Building Information Modeling (BIM) allows for rapid decision-making and evaluation. In this context, the work presented here focuses on resolving building safety issues via a proposed BIM-based quality checking process. Through the use case studies, the efficiency and usability of the devised strategy is evaluated. This research can be beneficial in promoting the efficient use of BIM-based communication and collaboration among the project party concerned for improving safety management. In addition, the work presented here has the potential to expand research efforts in BIM-based quality checking processes.


2021 ◽  
Author(s):  
Toni Wäfler ◽  
Rahel Gugerli ◽  
Giulio Nisoli

We all aim for safe processes. However, providing safety is a complex endeavour. What is it that makes a process safe? And what is the contribution of humans? It is very common to consider humans a risk factor prone to errors. Therefore, we implement sophisticated safety management systems (SMS) in order to prevent potential "human failure". These SMS provide an impressive increase of safety. In safety science this approach is labelled "Safety-I", and it starts to be questioned because humans do not show failures only. On the contrary, they often actively contribute to safety, sometimes even by deviating from a procedure. This "Safety-II" perspective considers humans to be a "safety factor" as well because of their ability to adjust behaviour to the given situation. However, adaptability requires scope of action and this is where Safety-I and Safety-II contradict each other. While the former restricts freedom of action, the latter requires room for manoeuvring. Thus, the task of integrating the Safety-II perspective into SMS, which are traditionally Safety-I based, is difficult. This challenge was the main objective of our project. We discovered two methods that contribute to the quality of SMS by integrating Safety-II into SMS without jeopardizing the Safety-I approach.


Author(s):  
Andriy Lishchytovych ◽  
Volodymyr Pavlenko

The present article describes setup, configuration and usage of the key performance indicators (KPIs) of members of project teams involved into the software development life cycle. Key performance indicators are described for the full software development life cycle and imply the deep integration with both task tracking systems and project code management systems, as well as a software product quality testing system. To illustrate, we used the extremely popular products - Atlassian Jira (tracking development tasks and bugs tracking system) and git (code management system). The calculation of key performance indicators is given for a team of three developers, two testing engineers responsible for product quality, one designer, one system administrator, one product manager (responsible for setting business requirements) and one project manager. For the key members of the team, it is suggested to use one integral key performance indicator per the role / team member, which reflects the quality of the fulfillment of the corresponding role of the tasks. The model of performance indicators is inverse positive - the initial value of each of the indicators is zero and increases in the case of certain deviations from the standard performance of official duties inherent in a particular role. The calculation of the proposed key performance indicators can be fully automated (in particular, using Atlassian Jira and Atlassian Bitbucket (git) or any other systems, like Redmine, GitLab or TestLink), which eliminates the human factor and, after the automation, does not require any additional effort to calculate. Using such a tool as the key performance indicators allows project managers to completely eliminate bias, reduce the emotional component and provide objective data for the project manager. The described key performance indicators can be used to reduce the time required to resolve conflicts in the team, increase productivity and improve the quality of the software product.


2005 ◽  
Vol 5 (2) ◽  
pp. 161
Author(s):  
C. R. Che Hassan ◽  
M. J. Pitt ◽  
A. J. Wilday

The development of the audit method has included the identification of possible performance indicators at each level of the sociotechnical pyramid for a range of areas of work in which accidents have been shown to occur most frequently. The measurementof performance indicators is part of a feedback loop which causes safety improvements. Integration of performance indicators into the audit system has been tested at three operating chemical industries in Terengganu and Selangor in Malaysia. A summary of the weaknesses of the similar elements identified in the three audited plants is presented. Analysis on the approach used enables the identification of deficiencies in safety management aspects. Keywords: Accidents, audit, deficiencies, performance indicators, safety management, and sociotechnical pyramid.


1995 ◽  
Vol 5 (5) ◽  
pp. 448-481 ◽  
Author(s):  
R. J. S. Mac Macpherson ◽  
Margaret Taplin

In this paper, we examine the policy preferences of Tasmania's principals concerning accountability criteria and processes, compare their views to other stakeholder groups, and identify issues that warrant attention in principals’ professional development programs. We show that there are many criteria and processes related to the quality of learning, teaching, and leadership that are valued by all stakeholder groups, including principals. We conclude that Tasmanian state schools probably need to review and develop their accountability policies, and that the professional development will need to prepare leaders for specific forms of performance and generate key competencies if more educative forms of accountability practices are to be realised in practice.


Sign in / Sign up

Export Citation Format

Share Document