scholarly journals Multi-response optimization of process parameters in friction stir welded AM20 magnesium alloy by Taguchi grey relational analysis

2015 ◽  
Vol 3 (1) ◽  
pp. 36-46 ◽  
Author(s):  
Prakash Kumar Sahu ◽  
Sukhomay Pal
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nitesh Jain ◽  
Rajesh Kumar

Purpose Friction stir welding (FSW) is considered an environmentally sound process compared to traditional fusion welding processes. It is a complex process in which various parameters influence weld strength. Therefore, it is essential to identify the best parameter settings for achieving the desired weld quality. This paper aims to investigate the multi-response optimization of process parameters of the FSWed 6061-T6 aluminum (Al) alloy. Design/methodology/approach The input process parameters related to FSW have been sorted out from a detailed literature survey. The properties of weldments such as yield strength, ultimate tensile strength, percentage elongation and microhardness have been used to evaluate weld quality. The process parameters have been optimized using the Taguchi-based grey relational analysis (GRA) methodology. Taguchi L16 orthogonal array has been considered to design the experiments. The effect of input parameters on output responses was also determined by the analysis of variance (ANOVA) method. Finally, to corroborate the results, a confirmatory experiment was carried out using the optimized parameters from the study. Findings The ANOVA result indicates that the tool rotation speed was the most significant parameter followed by tool pin profile and welding speed. From the confirmation test, it was observed that the optimum FSW process parameters predicted by the Taguchi method improved the grey relational grade by 13.52%. The experimental result also revealed that the Taguchi-based GRA method is feasible in finding solutions to multi-response optimization problems in the FSW process. Originality/value The present study is unique in the multi-response optimization of FSWed 6061-T6 Al alloy using the Taguchi and GRA methodology. The weld material having better mechanical properties is essential for the material industry.


Author(s):  
M.A. Unnikrishnan ◽  
J. Edwin Raja Dhas

In this paper, the Taguchi method and grey relational analysis have been used to evaluate the weldability of AZ91B Magnesium alloy by friction stir welding process. Experiments were conducted using the L9 Taguchi design considering an orthogonal array consist of 3 factors and 3 levels. The rotational speed, transverse speed and angle of tilt of the tool are selected as welding parameters. Analysis of variance (ANOVA) is used to analyze the influence of the welding parameters on the responses namely, ultimate tensile strength (UTS) and hardness. The analysis results revealed that the transverse speed is the predominant parameter affecting tensile strength, hardness and quality of the weld. Confirmation test results showed that the Taguchi method coupled with grey relational analysis is very successful in the optimization of welding parameters for maximum strength and hardness in the FSW of AZ91B Magnesium alloy.


2020 ◽  
Vol 833 ◽  
pp. 35-39 ◽  
Author(s):  
Shival Patel ◽  
Kishan Fuse ◽  
Khushboo Gangvekar ◽  
Vishvesh Badheka

This article presents multi-response optimization of friction stir welding of dissimilar Al 6061-Titanium alloy using Taguchi based grey relational analysis. Taguchi’s L9 orthogonal array was used for designing the experiments. Process parameters considered for the experiments were rotational speed, traverse speed and tilt angle. Ultimate tensile strength, yield strength, and % elongation were the responses measured which all are larger-the-better characteristics. Based on grey relational grade, optimum levels of process parameters were identified and further ANOVA analysis was carried out to find most significant process parameter.


Sign in / Sign up

Export Citation Format

Share Document