Multi-response optimization of process parameters in friction stir welded aluminum 6061-T6 alloy using Taguchi grey relational analysis

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nitesh Jain ◽  
Rajesh Kumar

Purpose Friction stir welding (FSW) is considered an environmentally sound process compared to traditional fusion welding processes. It is a complex process in which various parameters influence weld strength. Therefore, it is essential to identify the best parameter settings for achieving the desired weld quality. This paper aims to investigate the multi-response optimization of process parameters of the FSWed 6061-T6 aluminum (Al) alloy. Design/methodology/approach The input process parameters related to FSW have been sorted out from a detailed literature survey. The properties of weldments such as yield strength, ultimate tensile strength, percentage elongation and microhardness have been used to evaluate weld quality. The process parameters have been optimized using the Taguchi-based grey relational analysis (GRA) methodology. Taguchi L16 orthogonal array has been considered to design the experiments. The effect of input parameters on output responses was also determined by the analysis of variance (ANOVA) method. Finally, to corroborate the results, a confirmatory experiment was carried out using the optimized parameters from the study. Findings The ANOVA result indicates that the tool rotation speed was the most significant parameter followed by tool pin profile and welding speed. From the confirmation test, it was observed that the optimum FSW process parameters predicted by the Taguchi method improved the grey relational grade by 13.52%. The experimental result also revealed that the Taguchi-based GRA method is feasible in finding solutions to multi-response optimization problems in the FSW process. Originality/value The present study is unique in the multi-response optimization of FSWed 6061-T6 Al alloy using the Taguchi and GRA methodology. The weld material having better mechanical properties is essential for the material industry.

2020 ◽  
Vol 16 (5) ◽  
pp. 937-949
Author(s):  
Alagappan K M ◽  
Vijayaraghavan S ◽  
Jenarthanan M P ◽  
Giridharan R

PurposeThe purpose of this paper is to identify the ideal process parameters to be set for the drilling of hybrid fibre-reinforced polymer (FRP) (kenaf and banana) composite using High-Speed Steel drill bits (5, 10, 15 mm) coated with tungsten carbide by means of statistical reproduction of the delamination factor and machining force using Taguchi–Grey Relational Analysis.Design/methodology/approachThe contemplated process parameters are Feed, Speed and Drill Diameter. The trials were carried out by taking advantage of the L-27 factorial design by Taguchi. Three factors, the three level Taguchi Orthogonal Array design in Grey Relational Analysis was used to carry out the trial study. Video Measuring System was used to identify the damage around the drill region. “Minitab 18” was used to examine the data collected by taking advantage of the various statistical and graphical tools available. Examination of variance is used to legitimize the model in identifying the most notable parameter.FindingsThe optimised set of input parameters were found out successfully which are as follows: Feed Rate: 450 mm/min, Cutting Speed: 3,000 rpm and Drill Diameter of 5 mm. When these values are fed in as input the optimised output is being obtained. From ANOVA analysis, it is apparent that the Speed (contribution of 92.6%) is the most influencing parameter on the delamination factor and machining force of the FRP material.Originality/valueOptimization of process parameters on drilling of natural fibres reinforced in epoxy resin matrices using Taguchi–Grey Relational Analysis has not been previously explored.


2020 ◽  
Vol 833 ◽  
pp. 35-39 ◽  
Author(s):  
Shival Patel ◽  
Kishan Fuse ◽  
Khushboo Gangvekar ◽  
Vishvesh Badheka

This article presents multi-response optimization of friction stir welding of dissimilar Al 6061-Titanium alloy using Taguchi based grey relational analysis. Taguchi’s L9 orthogonal array was used for designing the experiments. Process parameters considered for the experiments were rotational speed, traverse speed and tilt angle. Ultimate tensile strength, yield strength, and % elongation were the responses measured which all are larger-the-better characteristics. Based on grey relational grade, optimum levels of process parameters were identified and further ANOVA analysis was carried out to find most significant process parameter.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bhanodaya Kiran Babu Nadikudi

Purpose The main purpose of the present work is to study the multi response optimization of dissimilar friction stir welding (FSW) process parameters using Taguchi-based grey relational analysis and desirability function approach (DFA). Design/methodology/approach The welded sheets were fabricated as per Taguchi orthogonal array design. The effects of tool rotational speed, transverse speed and tool tilt angle process parameters on ultimate tensile strength and hardness were analyzed using grey relational analysis, and DFA and optimum parameters combination was determined. Findings The tensile strength and hardness values were evaluated from the welded joints. The optimum values of process parameters were estimated through grey relational analysis and DFA methods. Similar kind of optimum levels of process parameters were obtained through two optimization approaches as tool rotational speed of 1150 rpm, transverse speed of 24 mm/min and tool tilt angle of 2° are the best process parameters combination for maximizing both the tensile strength and hardness. Through these studies, it was confirmed that grey relational analysis and DFA methods can be used to find the multi response optimum values of FSW process parameters. Research limitations/implications In the present study, the FSW is performed with L9 orthogonal array design with three process parameters such as tool rotational speed, transverse speed and tilt angle and three levels. Practical implications Aluminium alloys are widely using in automotive and aerospace industries due to holding a high strength to weight property. Originality/value Very limited work had been carried out on multi objective optimization techniques such as grey relational analysis and DFA on friction stir welded joints made with dissimilar aluminium alloys sheets.


Sign in / Sign up

Export Citation Format

Share Document