scholarly journals High temperature mechanical behaviour of Mg–6Zn–1Y alloy with 1 wt.% calcium addition: Reinforcing effect due to I-(Mg3Zn6Y1) and Mg6Zn3Ca2 phases

2020 ◽  
Vol 8 (4) ◽  
pp. 1047-1060
Author(s):  
J. Medina ◽  
G. Garces ◽  
P. Pérez ◽  
A. Stark ◽  
N. Schell ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 209
Author(s):  
Xuanming Ji ◽  
Panpan Ge ◽  
Song Xiang ◽  
Yuanbiao Tan

In this work, the effect of double-ageing heat treatments on the microstructural evolution and mechanical behaviour of a metastable β-titanium Ti-3.5Al-5Mo-4V alloy is investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The double-ageing treatments are composed of low-temperature pre-ageing and high-temperature ageing, where the low-temperature pre-ageing is conducted at 300 °C or 350 °C for different times, and the high-temperature ageing is conducted at 500 °C for 8 h. The results show that the phase transformation sequence is altered with the time spent during the first ageing stage, the isothermal ω phase is precipitated in the pre-ageing process of the alloy at 300 °C and 350 °C with the change in the ageing time, and the ω phase is finally transformed into the α phase with the extension of pre-ageing time. The existence time of the ω phase is shortened as the pre-ageing temperature increases. The microhardness of the alloy increases with increasing pre-ageing time and temperature. Compared with single-stage ageing, the ω phase formed in the pre-ageing stage changes the response to subsequent high-temperature ageing. After the two-stage ageing treatment, the precipitation size of the α phase is obviously refined after the double-ageing treatment. A microhardness test shows that the microhardness of the two-stage aged alloy increases with extended pre-ageing time.


2015 ◽  
Vol 93 ◽  
pp. 1188-1196 ◽  
Author(s):  
Antonia Martin ◽  
Jose Y. Pastor ◽  
Angel Palomo ◽  
Ana Fernández Jiménez

2010 ◽  
Vol 72 ◽  
pp. 40-45
Author(s):  
Giuliano Angella ◽  
Valentino Lupinc ◽  
Maurizio Maldini ◽  
Giovanni Onofrio

The high temperature creep and fatigue properties of two  -TiAl base intermetallic alloys, for gas turbine components, have been investigated within the Integrated European project IMPRESS. The alloys contain 8% at. of Ta or Nb, respectively. The microstructure of both alloys was cross convoluted lamellar rather than the well known conventional lamellar, typical of the usual -TiAl. The microstructure of the Ta containing alloy was homogeneous in all the analyzed batches whilst that of the Nb alloy appeared significantly spread out from specimen to specimen. The creep properties of the alloys were investigated in the temperature range 700-850°C with applied stresses in order to have times to rupture up to about 3,000 h. The creep behaviour presented no steady state regimes, but only minima of the creep rates between significant decelerating and accelerating regimes. The minimum creep rates of the Ta alloy resulted to be significantly slower than the Niobium alloy at the same creep conditions. In low cycle fatigue at 650 and 700°C the Ta  -TiAl showed longer lives than the Nb alloy, whilst the fatigue crack propagation rate in the same temperature range did not show any significant difference. Threshold values of stress intensity factor range were accurately measured at different R ratio. The microstructures of the two alloys were analysed by scanning microscopy in order to rationalise the different mechanical behaviour.


Sign in / Sign up

Export Citation Format

Share Document