scholarly journals Unconditional C-strong property of Faber–Schauder system

2009 ◽  
Vol 352 (2) ◽  
pp. 718-723 ◽  
Author(s):  
M.G. Grigoryan ◽  
A.A. Sargsyan
Keyword(s):  
2021 ◽  
Vol 8 (3) ◽  
pp. 1-17
Author(s):  
Faith Ellen ◽  
Barun Gorain ◽  
Avery Miller ◽  
Andrzej Pelc

Broadcast is one of the fundamental network communication primitives. One node of a network, called the s ource, has a message that has to be learned by all other nodes. We consider broadcast in radio networks, modeled as simple undirected connected graphs with a distinguished source. Nodes communicate in synchronous rounds. In each round, a node can either transmit a message to all its neighbours, or stay silent and listen. At the receiving end, a node v hears a message from a neighbour w in a given round if v listens in this round and if w is its only neighbour that transmits in this round. If more than one neighbour of a node v transmits in a given round, we say that a c ollision occurs at v . We do not assume collision detection: in case of a collision, node v does not hear anything (except the background noise that it also hears when no neighbour transmits). We are interested in the feasibility of deterministic broadcast in radio networks. If nodes of the network do not have any labels, deterministic broadcast is impossible even in the four-cycle. On the other hand, if all nodes have distinct labels, then broadcast can be carried out, e.g., in a round-robin fashion, and hence O (log n )-bit labels are sufficient for this task in n -node networks. In fact, O (log Δ)-bit labels, where Δ is the maximum degree, are enough to broadcast successfully. Hence, it is natural to ask if very short labels are sufficient for broadcast. Our main result is a positive answer to this question. We show that every radio network can be labeled using 2 bits in such a way that broadcast can be accomplished by some universal deterministic algorithm that does not know the network topology nor any bound on its size. Moreover, at the expense of an extra bit in the labels, we can get the following additional strong property of our algorithm: there exists a common round in which all nodes know that broadcast has been completed. Finally, we show that 3-bit labels are also sufficient to solve both versions of broadcast in the case where it is not known a priori which node is the source.


2021 ◽  
Vol 21 (3&4) ◽  
pp. 0181-0202
Author(s):  
Khodakhast Bibak ◽  
Robert Ritchie ◽  
Behrouz Zolfaghari

Quantum key distribution (QKD) offers a very strong property called everlasting security, which says if authentication is unbroken during the execution of QKD, the generated key remains information-theoretically secure indefinitely. For this purpose, we propose the use of certain universal hashing based MACs for use in QKD, which are fast, very efficient with key material, and are shown to be highly secure. Universal hash functions are ubiquitous in computer science with many applications ranging from quantum key distribution and information security to data structures and parallel computing. In QKD, they are used at least for authentication, error correction, and privacy amplification. Using results from Cohen [Duke Math. J., 1954], we also construct some new families of $\varepsilon$-almost-$\Delta$-universal hash function families which have much better collision bounds than the well-known Polynomial Hash. Then we propose a general method for converting any such family to an $\varepsilon$-almost-strongly universal hash function family, which makes them useful in a wide range of applications, including authentication in QKD.


FEDS Notes ◽  
2021 ◽  
Vol 2021 (2998) ◽  
Author(s):  
Carol Bertaut ◽  
◽  
Bastian von Beschwitz ◽  
Stephanie Curcuru ◽  
◽  
...  

For most of the last century, the preeminent role of the U.S. dollar in the global economy has been supported by the size and strength of the U.S. economy, its stability and openness to trade and capital flows, and strong property rights and the rule of law. As a result, the depth and liquidity of U.S. financial markets is unmatched, and there is a large supply of extremely safe dollar-denominated assets.


2019 ◽  
Vol 19 (02) ◽  
pp. 1950002 ◽  
Author(s):  
SHIYING WANG ◽  
YINGYING WANG

The diagnosability of a multiprocessor system plays an important role. The bubble-sort star graph BSn has many good properties. In this paper, we study the diagnosis on BSn under the comparison model. Following the concept of the local diagnosability, the strong local diagnosability property is discussed. This property describes the equivalence of the local diagnosability of a node and its degree. We prove that BSn (n ≥ 5) has this property, and it keeps this strong property even if there exist (2n − 5) missing edges in it, and the result is optimal with respect to the number of missing edges.


2019 ◽  
Vol 26 (4) ◽  
pp. 637-642 ◽  
Author(s):  
Dawoud Ahmadi Dastjerdi ◽  
Maliheh Dabbaghian Amiri

Abstract We show that a coded system is mixing if and only if it is totally transitive. If in addition it has a generator the length of whose elements are relatively prime, then it has strong property P. We continue by showing that a mixing half-synchronized system has such a generator. Moreover, we give an example of a mixing coded system which does not have any generator the length of whose elements are relatively prime.


2013 ◽  
Vol 170 (1) ◽  
pp. 85-86 ◽  
Author(s):  
Michael Tye
Keyword(s):  

Author(s):  
Huijing He

Scattering of elastic waves in heterogeneous media has become one of the most important problems in the field of wave propagation due to its broad applications in seismology, natural resource exploration, ultrasonic nondestructive evaluation and biomedical ultrasound. Nevertheless, it is one of the most challenging problems because of the complicated medium inhomogeneity and the complexity of the elastodynamic equations. A widely accepted model for the propagation and scattering of elastic waves, which properly incorporates the multiple scattering phenomenon and the statistical information of the inhomogeneities is still missing. In this work, the author developed a multiple scattering model for heterogeneous elastic continua with strong property fluctuation and obtained the exact solution to the dispersion equation under the first-order smoothing approximation. The model establishes an accurate quantitative relation between the microstructural properties and the coherent wave propagation parameters and can be used for characterization or inversion of microstructures. Starting from the elastodynamic differential equations, a system of integral equation for the Green functions of the heterogeneous medium was developed by using Green’s functions of a homogeneous reference medium. After properly eliminating the singularity of the Green tensor and introducing a new set of renormalized field variables, the original integral equation is reformulated into a system of renormalized integral equations. Dyson’s equation and its first-order smoothing approximation, describing the ensemble averaged response of the heterogeneous system, are then derived with the aid of Feynman’s diagram technique. The dispersion equations for the longitudinal and transverse coherent waves are then obtained by applying Fourier transform to the Dyson equation. The exact solution to the dispersion equations are obtained numerically. To validate the new model, the results for weak-property-fluctuation materials are compared to the predictions given by an improved weak-fluctuation multiple scattering theory. It is shown that the new model is capable of giving a more robust and accurate prediction of the dispersion behavior of weak-property-fluctuation materials. Numerical results further show that the new model is still able to provide accurate results for strong-property-fluctuation materials while the weak-fluctuation model is completely failed. As applications of the new model, dispersion and attenuation curves for coherent waves in the Earth’s lithosphere, the porous and two-phase alloys, and human cortical bone are calculated. Detailed analysis shows the model can capture the major dispersion and attenuation characteristics, such as the longitudinal and transverse wave Q-factors and their ratios, existence of two propagation modes, anomalous negative dispersion, nonlinear attenuation-frequency relation, and even the disappearance of coherent waves. Additionally, it helps gain new insights into a series of longstanding problems, such as the dominant mechanism of seismic attenuation and the existence of the Mohorovičić discontinuity. This work provides a general and accurate theoretical framework for quantitative characterization of microstructures in a broad spectrum of heterogeneous materials and it is anticipated to have vital applications in seismology, ultrasonic nondestructive evaluation and biomedical ultrasound.


2019 ◽  
Vol 223 (1) ◽  
pp. 151-193
Author(s):  
Mikael de la Salle

Sign in / Sign up

Export Citation Format

Share Document