scholarly journals Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero

2012 ◽  
Vol 389 (1) ◽  
pp. 138-146 ◽  
Author(s):  
Adriana C. Briozzo ◽  
Domingo A. Tarzia
2010 ◽  
Vol 29-32 ◽  
pp. 132-137 ◽  
Author(s):  
Xue Jiang Lai ◽  
Rui Li ◽  
Yong Dai ◽  
Su Yi Huang

Flower baffle heat exchanger’s structure and design idea is introduced. Flower baffle heat exchanger has unique support structure. It can both enhance the efficiency of the heat transfer and reduce the pressure drop. Through the experimental study, under the same shell side flow, the heat transfer coefficient K which the distance between two flower baffles is 134mm is higher 3%~9% than the one of which the distances between two flower baffles are 163mm,123mm. The heat transfer coefficient K which the distance between two flower baffles is 147mm is close to the one of which the distances between two flower baffles is 134mm. The shell volume flow V is higher, the incremental quantity of heat transfer coefficient K is more. The integrated performance K/Δp of flower baffle heat exchanger which the distance between two flower baffles is 134mm is higher 3%~9% than the one of which the distances between two flower baffles are 163mm,123mm. Therefore, the best distance between two flower baffles exists between 134mm~147mm this experiment.


Author(s):  
Yong Tang ◽  
Ting Fu ◽  
Yijin Mao ◽  
Yuwen Zhang ◽  
Wei Yuan

Molecular dynamics (MD) simulation aiming to investigate heat transfer between argon fluid flow and two parallel copper plates in the nanoscale is carried out by simultaneously control momentum and temperature of the simulation box. The top copper wall is kept at a constant velocity by adding an external force according to the velocity difference between on-the-fly and desired velocities. At the same time the top wall holds a higher temperature while the bottom wall is considered as physically stationary and has a lower temperature. A sample region is used in order to measure the heat flux flowing across the simulation box, and thus the heat transfer coefficient between the fluid and wall can be estimated through its definition. It is found that the heat transfer coefficient between argon fluid flow and copper plate in this scenario is lower but still in the same order magnitude in comparison with the one predicted based on the hypothesis in other reported work.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 186
Author(s):  
Young Seo Kim ◽  
Jin Young Jeong ◽  
Jae Su Kwak ◽  
Heeyoon Chung

An experimental study was performed to investigate the effects of the arrangement of fan-shaped film cooling holes and density ratio (DR) on heat transfer coefficient augmentation. Both single- and multi-row fan-shaped film cooling holes were considered. For the multi-row fan-shaped holes, the heat transfer coefficient was measured at DRs of 1 and 2, and both staggered and inline arrangements of holes were considered. For the single-row fan-shaped holes, DR = 1.0, 1.5, 2.0, and 2.5 and M = 1.0 and 2.0 conditions were tested. The mainstream velocity was 20 m/s, and the turbulence intensity and boundary layer thickness were 3.6% and 6 mm, respectively. The heat transfer coefficient was measured using the one-dimensional transient infrared thermography method. The results show that an increased heat transfer coefficient augmentation is observed between film cooling holes for the case with a smaller hole pitch and higher blowing ratio. For the given fan-shaped hole parameters, the effects of the row-to-row distance and hole arrangement are not significant. In addition, as the velocity difference between the mainstream and coolant increases, the heat transfer coefficient ratio increases.


Author(s):  
Hong-Qing Jin ◽  
Wentao Ni ◽  
Xiaofei Wang

Abstract The refrigerant retained on heat transfer surfaces has a deleterious impact on the performance of heating, ventilation, air conditioning and refrigeration systems, which not only increases the thermal resistance between the vapor and surface, but also requires a higher charge to the system. In this work, a new paraffin coating has been applied on condensation surfaces, and R134a condensate retention has been studied on both copper plate and fins with (without) coating. The heat transfer coefficient was measured based on the one-dimensional heat conduction method and the retention was quantified using image processing. The results show that the heat transfer has been enhanced on the coated surfaces under a wide range of subcool degree, with a maximum increase of 27.4% in heat transfer coefficient; a reduced liquid retention has also been observed on paraffin coated fins with the retention area ratio decreased by 35.1% to 47.1% (depending on different subcool) compared to the uncoated fins. This work shows great potentials for reducing retained liquid and enhance heat transfer during refrigerant condensation.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (7) ◽  
pp. 441-450
Author(s):  
HENRIK WALLMO, ◽  
ULF ANDERSSON ◽  
MATHIAS GOURDON ◽  
MARTIN WIMBY

Many of the pulp mill biorefinery concepts recently presented include removal of lignin from black liquor. In this work, the aim was to study how the change in liquor chemistry affected the evaporation of kraft black liquor when lignin was removed using the LignoBoost process. Lignin was removed from a softwood kraft black liquor and four different black liquors were studied: one reference black liquor (with no lignin extracted); two ligninlean black liquors with a lignin removal rate of 5.5% and 21%, respectively; and one liquor with maximum lignin removal of 60%. Evaporation tests were carried out at the research evaporator in Chalmers University of Technology. Studied parameters were liquor viscosity, boiling point rise, heat transfer coefficient, scaling propensity, changes in liquor chemical composition, and tube incrustation. It was found that the solubility limit for incrustation changed towards lower dry solids for the lignin-lean black liquors due to an increased salt content. The scaling obtained on the tubes was easily cleaned with thin liquor at 105°C. It was also shown that the liquor viscosity decreased exponentially with increased lignin outtake and hence, the heat transfer coefficient increased with increased lignin outtake. Long term tests, operated about 6 percentage dry solids units above the solubility limit for incrustation for all liquors, showed that the heat transfer coefficient increased from 650 W/m2K for the reference liquor to 1500 W/m2K for the liquor with highest lignin separation degree, 60%.


Sign in / Sign up

Export Citation Format

Share Document