Experimental Study of Refrigerant (R134a) Condensate Retention on Paraffin Coated Plates and Fin Structures

Author(s):  
Hong-Qing Jin ◽  
Wentao Ni ◽  
Xiaofei Wang

Abstract The refrigerant retained on heat transfer surfaces has a deleterious impact on the performance of heating, ventilation, air conditioning and refrigeration systems, which not only increases the thermal resistance between the vapor and surface, but also requires a higher charge to the system. In this work, a new paraffin coating has been applied on condensation surfaces, and R134a condensate retention has been studied on both copper plate and fins with (without) coating. The heat transfer coefficient was measured based on the one-dimensional heat conduction method and the retention was quantified using image processing. The results show that the heat transfer has been enhanced on the coated surfaces under a wide range of subcool degree, with a maximum increase of 27.4% in heat transfer coefficient; a reduced liquid retention has also been observed on paraffin coated fins with the retention area ratio decreased by 35.1% to 47.1% (depending on different subcool) compared to the uncoated fins. This work shows great potentials for reducing retained liquid and enhance heat transfer during refrigerant condensation.

Author(s):  
Yong Tang ◽  
Ting Fu ◽  
Yijin Mao ◽  
Yuwen Zhang ◽  
Wei Yuan

Molecular dynamics (MD) simulation aiming to investigate heat transfer between argon fluid flow and two parallel copper plates in the nanoscale is carried out by simultaneously control momentum and temperature of the simulation box. The top copper wall is kept at a constant velocity by adding an external force according to the velocity difference between on-the-fly and desired velocities. At the same time the top wall holds a higher temperature while the bottom wall is considered as physically stationary and has a lower temperature. A sample region is used in order to measure the heat flux flowing across the simulation box, and thus the heat transfer coefficient between the fluid and wall can be estimated through its definition. It is found that the heat transfer coefficient between argon fluid flow and copper plate in this scenario is lower but still in the same order magnitude in comparison with the one predicted based on the hypothesis in other reported work.


2010 ◽  
Vol 29-32 ◽  
pp. 132-137 ◽  
Author(s):  
Xue Jiang Lai ◽  
Rui Li ◽  
Yong Dai ◽  
Su Yi Huang

Flower baffle heat exchanger’s structure and design idea is introduced. Flower baffle heat exchanger has unique support structure. It can both enhance the efficiency of the heat transfer and reduce the pressure drop. Through the experimental study, under the same shell side flow, the heat transfer coefficient K which the distance between two flower baffles is 134mm is higher 3%~9% than the one of which the distances between two flower baffles are 163mm,123mm. The heat transfer coefficient K which the distance between two flower baffles is 147mm is close to the one of which the distances between two flower baffles is 134mm. The shell volume flow V is higher, the incremental quantity of heat transfer coefficient K is more. The integrated performance K/Δp of flower baffle heat exchanger which the distance between two flower baffles is 134mm is higher 3%~9% than the one of which the distances between two flower baffles are 163mm,123mm. Therefore, the best distance between two flower baffles exists between 134mm~147mm this experiment.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Mehmet Arik ◽  
Tunc Icoz

Synthetic jets are piezo-driven, small-scale, pulsating devices capable of producing highly turbulent jets formed by periodic entrainment and expulsion of the fluid in which they are embedded. The compactness of these devices accompanied by high air velocities provides an exciting opportunity to significantly reduce the size of thermal management systems in electronic packages. A number of researchers have shown the implementations of synthetic jets on heat transfer applications; however, there exists no correlation to analytically predict the heat transfer coefficient for such applications. A closed form correlation was developed to predict the heat transfer coefficient as a function of jet geometry, position, and operating conditions for impinging flow based on experimental data. The proposed correlation was shown to predict the synthetic jet impingement heat transfer within 25% accuracy for a wide range of operating conditions and geometrical variables.


Author(s):  
Evgeniy N. Vasil'ev

The article discusses the process of heat exchange of a finned wall with a coolant. The temperature field in the wall volume was determined on the basis of a numerical solution of the two-dimensional heat conduction problem, and the analysis of the characteristics of temperature distributions was carried out according to the simulation results. The values of the heat transfer coefficient of cooling fins with rectangular cross section were calculated for two variants of heat transfer conditions at the end of the fins in a wide range of dimensionless parameters. The error in calculating the heat transfer coefficient in the approximation of a thin fin was determined by means of a one-dimensional computational model


Author(s):  
C. Cravero ◽  
C. Giusto ◽  
A. F. Massardo

The fluid-dynamic and heat transfer experimental analysis of a gas turbine internal three-pass blade cooling channel is presented. The passage is composed of three rectilinear channels joined by two sharp 180 degree turns; moreover the channel section is trapezoidal instead of the rectangular configuration already analysed in depth in literature. The trapezoidal section is more representative of the actual geometrical configuration of the blade and, in comparison with the rectangular section, it shows significant aspect ratio and hydraulic diameter variations along the channel. These variations have a strong impact on the flow field and the heat transfer coefficient distributions. The flow analysis experimental results — wall pressure distributions, flow visualisations — are presented and discussed. The heat transfer coefficient distributions, Nusselt enhancement factor, obtained using Thermocromic Liquid Crystals (TLC), have been studied as well. In order to understand the influence of the cooling mass flow rate, a wide range of flow regimes-Reynolds numbers- has been considered.


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Lorenzo Mazzei

Jet array is an arrangement typically used to cool several gas turbine parts. Some examples of such applications can be found in the impingement cooled region of gas turbine airfoils or in the turbine blade tip clearances control of large aero-engines. In the open literature, several contributions focus on the impingement jets formation and deal with the heat transfer phenomena that take place on the impingement target surface. However, deficiencies of general studies emerge when the internal convective cooling of the impinging system feeding channels is concerned. In this work, an aerothermal analysis of jet arrays for active clearance control (ACC) was performed; the aim was the definition of a correlation for the internal (i.e., within the feeding channel) convective heat transfer coefficient augmentation due to the coolant extraction operated by the bleeding holes. The data were taken from a set of computational fluid-dynamics (CFD) Reynolds-averaged Navier–Stokes (RANS) simulations, in which the behavior of the cooling system was investigated over a wide range of fluid-dynamics conditions. More in detail, several different holes arrangements were investigated with the aim of evaluating the influence of the hole spacing on the heat transfer coefficient distribution. Tests were conducted by varying the feeding channel Reynolds number in a wide range of real engine operative conditions. An in depth analysis of the numerical data set has underlined the opportunity of an efficient reduction through the local suction ratio (SR) of hole and feeding pipe, local Reynolds number, and manifold porosity: the dependence of the heat transfer coefficient enhancement factor (EF) from these parameter is roughly exponential.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 186
Author(s):  
Young Seo Kim ◽  
Jin Young Jeong ◽  
Jae Su Kwak ◽  
Heeyoon Chung

An experimental study was performed to investigate the effects of the arrangement of fan-shaped film cooling holes and density ratio (DR) on heat transfer coefficient augmentation. Both single- and multi-row fan-shaped film cooling holes were considered. For the multi-row fan-shaped holes, the heat transfer coefficient was measured at DRs of 1 and 2, and both staggered and inline arrangements of holes were considered. For the single-row fan-shaped holes, DR = 1.0, 1.5, 2.0, and 2.5 and M = 1.0 and 2.0 conditions were tested. The mainstream velocity was 20 m/s, and the turbulence intensity and boundary layer thickness were 3.6% and 6 mm, respectively. The heat transfer coefficient was measured using the one-dimensional transient infrared thermography method. The results show that an increased heat transfer coefficient augmentation is observed between film cooling holes for the case with a smaller hole pitch and higher blowing ratio. For the given fan-shaped hole parameters, the effects of the row-to-row distance and hole arrangement are not significant. In addition, as the velocity difference between the mainstream and coolant increases, the heat transfer coefficient ratio increases.


2021 ◽  
Author(s):  
Deogratius Kisitu ◽  
Alfonso Ortega

Abstract Impingement split flow liquid-cooled microchannel cold plates are one of several flow configurations used for single-phase liquid cooling. Split flow or top-in/side-exit (TISE) cold plates divide the flow into two branches thus resulting in halved or reduced flow rates and flow lengths, compared to traditional side-in /side-exit (SISE) or parallel flow cold plates. This has the effect of reducing the pressure drop because of the shorter flow length and lower flow rate and increasing the heat transfer coefficient due to thermally developing as opposed to fully developed flow. It is also claimed that the impinging flow increases the heat transfer coefficient on the base plate in the region of impingement. Because of the downward impinging and turning flow, there are no exact analytical models for this flow configuration. Computational and experimental studies have been performed, but there are no useful compact analytical models in the literature that can be used to predict the performance of these impingement cold plates. Results are presented for novel physics-based laminar flow models for a TISE microchannel cold plate based on an equivalent parallel channel flow approach. We show that the new models accurately predict the thermal-hydraulic performance over a wide range of parameters.


Sign in / Sign up

Export Citation Format

Share Document