scholarly journals Hypercyclic algebras for convolution operators of unimodular constant term

2020 ◽  
Vol 483 (1) ◽  
pp. 123595
Author(s):  
J. Bès ◽  
R. Ernst ◽  
A. Prieto
2010 ◽  
Vol 152-153 ◽  
pp. 164-170
Author(s):  
Jie Liu ◽  
Jian Lin Li ◽  
Ying Xia Li ◽  
Shan Shan Yang ◽  
Ji Fang Zhou ◽  
...  

Specific to the improvement in the present research of mechanical response under cyclic loading, this paper, taking the calcareous middle- coarse sandstone as the research subject and the RMT-150C experimental system in which data is recoded by ms magnitude as the platform, develops several related models concerning the unloading rate of triangle waves. The unloading process is divided into lag time segment and non-lag time segment, with criterions and related parameters provided as well. The term apparent elastic modulus is defined. The test data analysis shows that there exist a linear relationship between the apparent modulus and instant vertical force before load damage in non-lag time segment. On the preceding basis, a rate-dependent model of triangular wave un-installation section in non-lag time segment is established. Due to the inability of the loading equipment to accurately input the triangle wave, the average loading rate is amended and a constant term is added into it. The model is proved to be reliable, as the predicted value of the deformation rate and the stress strain curve coincides with measured value. At the same time, the impact of the lag time is pointed out quantitatively and a predication model of lag time segment is set up.


2021 ◽  
Vol 183 (2) ◽  
Author(s):  
D. Benedetto ◽  
E. Caglioti ◽  
S. Caracciolo ◽  
M. D’Achille ◽  
G. Sicuro ◽  
...  

AbstractWe consider the assignment problem between two sets of N random points on a smooth, two-dimensional manifold $$\Omega $$ Ω of unit area. It is known that the average cost scales as $$E_{\Omega }(N)\sim {1}/{2\pi }\ln N$$ E Ω ( N ) ∼ 1 / 2 π ln N with a correction that is at most of order $$\sqrt{\ln N\ln \ln N}$$ ln N ln ln N . In this paper, we show that, within the linearization approximation of the field-theoretical formulation of the problem, the first $$\Omega $$ Ω -dependent correction is on the constant term, and can be exactly computed from the spectrum of the Laplace–Beltrami operator on $$\Omega $$ Ω . We perform the explicit calculation of this constant for various families of surfaces, and compare our predictions with extensive numerics.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Roland Duduchava

AbstractThe purpose of the present research is to investigate a general mixed type boundary value problem for the Laplace–Beltrami equation on a surface with the Lipschitz boundary 𝒞 in the non-classical setting when solutions are sought in the Bessel potential spaces \mathbb{H}^{s}_{p}(\mathcal{C}), \frac{1}{p}<s<1+\frac{1}{p}, 1<p<\infty. Fredholm criteria and unique solvability criteria are found. By the localization, the problem is reduced to the investigation of model Dirichlet, Neumann and mixed boundary value problems for the Laplace equation in a planar angular domain \Omega_{\alpha}\subset\mathbb{R}^{2} of magnitude 𝛼. The model mixed BVP is investigated in the earlier paper [R. Duduchava and M. Tsaava, Mixed boundary value problems for the Helmholtz equation in a model 2D angular domain, Georgian Math. J.27 (2020), 2, 211–231], and the model Dirichlet and Neumann boundary value problems are studied in the non-classical setting. The problems are investigated by the potential method and reduction to locally equivalent 2\times 2 systems of Mellin convolution equations with meromorphic kernels on the semi-infinite axes \mathbb{R}^{+} in the Bessel potential spaces. Such equations were recently studied by R. Duduchava [Mellin convolution operators in Bessel potential spaces with admissible meromorphic kernels, Mem. Differ. Equ. Math. Phys.60 (2013), 135–177] and V. Didenko and R. Duduchava [Mellin convolution operators in Bessel potential spaces, J. Math. Anal. Appl.443 (2016), 2, 707–731].


1982 ◽  
Vol 56 (4) ◽  
pp. 524-528 ◽  
Author(s):  
Joseph Th. J. Tans ◽  
Dick C. J. Poortvliet

✓ The pressure-volume index (PVI) was determined in 40 patients who underwent continuous monitoring of ventricular fluid pressure. The PVI value was calculated using different mathematical models. From the differences between these values, it is concluded that a monoexponential relationship with a constant term provides the best approximation of the PVI.


2010 ◽  
Vol 32 (1) ◽  
pp. 59-68
Author(s):  
Yandan Zhang ◽  
Dashan Fan ◽  
Jiecheng Chen

2011 ◽  
Vol 704-705 ◽  
pp. 631-635
Author(s):  
Xian Feng Wang ◽  
Feng Xing ◽  
Norio Hasebe

The complex stress function method is used in this study to formulate the 2-dimensional problem for nonhomogeneous materials. The Young’s modulus E varies linearly with the coordinate x and the Poisson’s ratio of the material is assumed constant and. The stress components and the boundary conditions are expressed in terms of two complex stress functions in explicit forms. It is noted that the constant term in stress functions has an influence on the stress components, which is different from the homogeneous material case. Subsequently, the problem of a nonhomogeneous plane containing a circular hole subjected to a uniform internal pressure is studied.


1972 ◽  
Vol 3 (2) ◽  
pp. 380-388 ◽  
Author(s):  
Stan K. Kranzler

2001 ◽  
Vol 09 (02) ◽  
pp. 495-513 ◽  
Author(s):  
A. HANYGA ◽  
M. SEREDYŃSKA

Uniformly asymptotic frequency-domain solutions for a class of hyperbolic equations with singular convolution operators are derived. Asymptotic solutions for this class of equations involve additional parameters — called attenuation parameters — which control the smoothing of the wavefield at the wavefront. At caustics the ray amplitudes have a singularity associated with vanishing of ray spreading and with divergence of an integral controlling the rate of exponential amplitude decay. Both problems are resolved by applying a generalized Kravtsov–Ludwig formula derived in this paper. A different asymptotic solution is constructed in the case of separation of dispersion and focusing effects.


Sign in / Sign up

Export Citation Format

Share Document