Deterministic control of material removal distribution to converge surface figure in full-aperture polishing

2020 ◽  
Vol 53 ◽  
pp. 144-152 ◽  
Author(s):  
Defeng Liao ◽  
Feihu Zhang ◽  
Ruiqing Xie ◽  
Shijie Zhao ◽  
Jian Wang ◽  
...  
2010 ◽  
Vol 102-104 ◽  
pp. 634-638 ◽  
Author(s):  
Shi Ming Ji ◽  
Guo Da Chen ◽  
Ming Sheng Jin ◽  
Li Zhang

Magnetorheological flexible gasbag polishing based on the special application of magnetorheological fluid (MRF) in robotic gasbag polishing technique is a novel efficient approach in the field of mould finishing. It can control the polishing pressure by changing the magnetic force generated by MRF inside of the gasbag with the effect of variable magnetic field of electromagnetic coil. Its mathematical model is established to study the main factors influencing the material removal. The orthogonal tests are applied to analyze these important parameters. From the experimental results, it can be seen that this new approach is desirable in realizing the control of surface figure accuracy and improvement of surface quality under certain condition.


2007 ◽  
Vol 329 ◽  
pp. 285-290
Author(s):  
Gui Wen Kang ◽  
Fei Hu Zhang

Magnetorheological finishing (MRF) is a novel precision optical machining technology. Owing to its flexible finishing process, MRF can eliminate subsurface damage, smooth rms micro roughness and correct surface figure errors. The finishing process can be easily controlled by a computer. Material removal model in MRF is established. According to Preston equation in optical machining, mathematic model of material removal rate in MRF rotating at fixed rate is established through hydrodynamic analysis of the MR fluid flow in the polishing zone. The validity of the model is examined by the experimental results.


2006 ◽  
Vol 532-533 ◽  
pp. 133-136
Author(s):  
Gui Wen Kang ◽  
Fei Hu Zhang

Magnetorheological finishing (MRF) is a novel precision optical machining technology. MRF utilizes magnetic particles, nonmagnetic polishing abrasives in carrier fluid, and a magnetic field to finish optical materials. Owing to its flexible finishing process, MRF eliminates subsurface damage, corrects surface figure errors and the finishing process can be easily controlled by computer. To achieve deterministic finishing, it’s necessary to know the mechanism of material removal. Different magnetorheological fluids are used to finish optical glass on the same machining condition. The material removal and surface quality are examined after finishing with no polishing abrasive, aluminium oxide and cerium oxide. The results show that the hardness of polishing abrasive is not the main factors to affect material removal.


2018 ◽  
Vol 57 (4) ◽  
pp. 588 ◽  
Author(s):  
Defeng Liao ◽  
Lele Ren ◽  
Feihu Zhang ◽  
Jian Wang ◽  
Qiao Xu

Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


Author(s):  
A. Pandey ◽  
R. Kumar ◽  
A. K. Sahoo ◽  
A. Paul ◽  
A. Panda

The current research presents an overall performance-based analysis of Trihexyltetradecylphosphonium Chloride [[CH3(CH2)5]P(Cl)(CH2)13CH3] ionic fluid mixed with organic coconut oil (OCO) during turning of hardened D2 steel. The application of cutting fluid on the cutting interface was performed through Minimum Quantity Lubrication (MQL) approach keeping an eye on the detrimental consequences of conventional flood cooling. PVD coated (TiN/TiCN/TiN) cermet tool was employed in the current experimental work. Taguchi’s L9 orthogonal array and TOPSIS are executed to analysis the influences, significance and optimum parameter settings for predefined process parameters. The prime objective of the current work is to analyze the influence of OCO based Trihexyltetradecylphosphonium Chloride ionic fluid on flank wear, surface roughness, material removal rate, and chip morphology. Better quality of finish (Ra = 0.2 to 1.82 µm) was found with 1% weight fraction but it is not sufficient to control the wear growth. Abrasion, chipping, groove wear, and catastrophic tool tip breakage are recognized as foremost tool failure mechanisms. The significance of responses have been studied with the help of probability plots, main effect plots, contour plots, and surface plots and the correlation between the input and output parameters have been analyzed using regression model. Feed rate and depth of cut are equally influenced (48.98%) the surface finish while cutting speed attributed the strongest influence (90.1%). The material removal rate is strongly prejudiced by cutting speed (69.39 %) followed by feed rate (28.94%) whereas chip reduction coefficient is strongly influenced through the depth of cut (63.4%) succeeded by feed (28.8%). TOPSIS significantly optimized the responses with 67.1 % gain in closeness coefficient.


Sign in / Sign up

Export Citation Format

Share Document