The relation of wind stress curl and meridional transport in the Benguela upwelling system

2015 ◽  
Vol 143 ◽  
pp. 1-6 ◽  
Author(s):  
Tim Junker ◽  
Martin Schmidt ◽  
Volker Mohrholz
2015 ◽  
Vol 28 (23) ◽  
pp. 9409-9432 ◽  
Author(s):  
R. Justin Small ◽  
Enrique Curchitser ◽  
Katherine Hedstrom ◽  
Brian Kauffman ◽  
William G. Large

Abstract Of all the major coastal upwelling systems in the world’s oceans, the Benguela, located off southwest Africa, is the one that climate models find hardest to simulate well. This paper investigates the sensitivity of upwelling processes, and of sea surface temperature (SST), in this region to resolution of the climate model and to the offshore wind structure. The Community Climate System Model (version 4) is used here, together with the Regional Ocean Modeling System. The main result is that a realistic wind stress curl at the eastern boundary, and a high-resolution ocean model, are required to well simulate the Benguela upwelling system. When the wind stress curl is too broad (as with a 1° atmosphere model or coarser), a Sverdrup balance prevails at the eastern boundary, implying southward ocean transport extending as far as 30°S and warm advection. Higher atmosphere resolution, up to 0.5°, does bring the atmospheric jet closer to the coast, but there can be too strong a wind stress curl. The most realistic representation of the upwelling system is found by adjusting the 0.5° atmosphere model wind structure near the coast toward observations, while using an eddy-resolving ocean model. A similar adjustment applied to a 1° ocean model did not show such improvement. Finally, the remote equatorial Atlantic response to restoring SST in a broad region offshore of Benguela is substantial; however, there is not a large response to correcting SST in the narrow coastal upwelling zone alone.


Author(s):  
Mohammad Hadi Bordbar ◽  
Volker Mohrholz ◽  
Martin Schmidt

AbstractSpatial and temporal variations of nutrient-rich upwelled water across the major eastern boundary upwelling systems are primarily controlled by the surface wind with different, and sometimes contrasting, impacts on coastal upwelling systems driven by alongshore wind and offshore upwelling systems driven by the local wind-stress-curl. Here, concurrently measured wind-fields, satellite-derived Chlorophyll-a concentration along with a state-of-the-art ocean model simulation spanning 2008-2018 are used to investigate the connection between coastal and offshore physical drivers of the Benguela Upwelling System (BUS). Our results indicate that the spatial structure of long-term mean upwelling derived from Ekman theory and the numerical model are fairly consistent across the entire BUS and closely followed by the Chlorophyll-a pattern. The variability of the upwelling from the Ekman theory is proportionally diminished with offshore distance, whereas different and sometimes opposite structures are revealed in the model-derived upwelling. Our result suggests the presence of sub-mesoscale activity (i.e., filaments and eddies) across the entire BUS with a large modulating effect on the wind-stress-curl-driven upwelling off Lüderitz and Walvis Bay. In Kunene and Cape Frio upwelling cells, located in the northern sector of the BUS, the coastal upwelling and open-ocean upwelling frequently alternate each other, whereas they are modulated by the annual cycle and mostly in phase off Walvis Bay. Such a phase relationship appears to be strongly seasonally dependent off Lüderitz and across the southern BUS. Thus, our findings suggest this relationship is far more complex than currently thought and seems to be sensitive to climate changes with short- and far-reaching consequences for this vulnerable marine ecosystem.


1962 ◽  
Vol 12 (1) ◽  
pp. 49-80 ◽  
Author(s):  
G. F. Carrier ◽  
A. R. Robinson

A surface distribution of stress is imposed on an ocean enclosed by two continental boundaries; the resulting transport circulation is studied between two latitudes of zero surface wind-stress curl, within which the curl reaches a single maximum. Under the assumption that turbulent transfer of relative vorticity has a minimum effect on the mean circulation, inviscid flow patterns are deduced in the limit of small transport Rossby number. Inertial currents, or naturally scaled regions of high relative vorticity, occur on both the eastern and the western continental coasts. Limits on the relative transports of the currents are obtained and found to depend on the direction of variation of the wind-stress curl with latitude, relative to that of the Coriolis accelerations. The most striking feature of the inviscid flow is a narrow inertial current the axis of which lies along the latitude of maximum wind-stress curl. All eastward flow occurs in this midlatitude jet.A feature of the flow which cannot remain essentially free of turbulent processes is the integrated vorticity relationship, since the imposed wind-stress distribution acts as a net source of vorticity for the ocean. Heuristic arguments are used together with this integral constraint to deduce the presence and strength of the turbulent diffusion which must occur in the region of the mid-latitude jet. It is further inferred that the turbulent meanders of the jet must effect a net meridional transport of relative vorticity.


2019 ◽  
Vol 69 (11-12) ◽  
pp. 1387-1399 ◽  
Author(s):  
Huan-Huan Chen ◽  
Yiquan Qi ◽  
Yuntao Wang ◽  
Fei Chai

Abstract Fourteen years (September 2002 to August 2016) of high-resolution satellite observations of sea surface temperature (SST) data are used to describe the frontal pattern and frontogenesis on the southeastern continental shelf of Brazil. The daily SST fronts are obtained using an edge-detection algorithm, and the monthly frontal probability (FP) is subsequently calculated. High SST FPs are mainly distributed along the coast and decrease with distance from the coastline. The results from empirical orthogonal function (EOF) decompositions reveal strong seasonal variability of the coastal SST FP with maximum (minimum) in the astral summer (winter). Wind plays an important role in driving the frontal activities, and high FPs are accompanied by strong alongshore wind stress and wind stress curl. This is particularly true during the summer, when the total transport induced by the alongshore component of upwelling-favorable winds and the wind stress curl reaches the annual maximum. The fronts are influenced by multiple factors other than wind forcing, such as the orientation of the coastline, the seafloor topography, and the meandering of the Brazil Current. As a result, there is a slight difference between the seasonality of the SST fronts and the wind, and their relationship was varying with spatial locations. The impact of the air-sea interaction is further investigated in the frontal zone, and large coupling coefficients are found between the crosswind (downwind) SST gradients and the wind stress curl (divergence). The analysis of the SST fronts and wind leads to a better understanding of the dynamics and frontogenesis off the southeastern continental shelf of Brazil, and the results can be used to further understand the air-sea coupling process at regional level.


2016 ◽  
Vol 157 ◽  
pp. 124-134 ◽  
Author(s):  
Deon C. Louw ◽  
Anja K. van der Plas ◽  
Volker Mohrholz ◽  
Norbert Wasmund ◽  
Tim Junker ◽  
...  

2021 ◽  
Vol 51 (5) ◽  
pp. 1441-1464
Author(s):  
Andrew L. Stewart ◽  
James C. McWilliams ◽  
Aviv Solodoch

AbstractPrevious studies have concluded that the wind-input vorticity in ocean gyres is balanced by bottom pressure torques (BPT), when integrated over latitude bands. However, the BPT must vanish when integrated over any area enclosed by an isobath. This constraint raises ambiguities regarding the regions over which BPT should close the vorticity budget, and implies that BPT generated to balance a local wind stress curl necessitates the generation of a compensating, nonlocal BPT and thus nonlocal circulation. This study aims to clarify the role of BPT in wind-driven gyres using an idealized isopycnal model. Experiments performed with a single-signed wind stress curl in an enclosed, sloped basin reveal that BPT balances the winds only when integrated over latitude bands. Integrating over other, dynamically motivated definitions of the gyre, such as barotropic streamlines, yields a balance between wind stress curl and bottom frictional torques. This implies that bottom friction plays a nonnegligible role in structuring the gyre circulation. Nonlocal bottom pressure torques manifest in the form of along-slope pressure gradients associated with a weak basin-scale circulation, and are associated with a transition to a balance between wind stress and bottom friction around the coasts. Finally, a suite of perturbation experiments is used to investigate the dynamics of BPT. To predict the BPT, the authors extend a previous theory that describes propagation of surface pressure signals from the gyre interior toward the coast along planetary potential vorticity contours. This theory is shown to agree closely with the diagnosed contributions to the vorticity budget across the suite of model experiments.


2018 ◽  
Vol 123 (12) ◽  
pp. 9416-9428 ◽  
Author(s):  
Nele Tim ◽  
Eduardo Zorita ◽  
Franziska U. Schwarzkopf ◽  
Siren Rühs ◽  
Kay‐Christian Emeis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document