scholarly journals The Impact of Agulhas Leakage on the Central Water Masses in the Benguela Upwelling System From A High‐Resolution Ocean Simulation

2018 ◽  
Vol 123 (12) ◽  
pp. 9416-9428 ◽  
Author(s):  
Nele Tim ◽  
Eduardo Zorita ◽  
Franziska U. Schwarzkopf ◽  
Siren Rühs ◽  
Kay‐Christian Emeis ◽  
...  
2014 ◽  
Vol 11 (3) ◽  
pp. 885-897 ◽  
Author(s):  
A. Flohr ◽  
A. K. van der Plas ◽  
K.-C. Emeis ◽  
V. Mohrholz ◽  
T. Rixen

Abstract. On a global scale the ratio of fixed nitrogen (N) and phosphate (P) is characterized by a deficit of N with regard to the classical Redfield ratio of N : P = 16 : 1 reflecting the impact of N loss occurring in the oceanic oxygen minimum zones. The northern Benguela upwelling system (NBUS) is known for losses of N and the accumulation of P in sub- and anoxic bottom waters and sediments of the Namibian shelf resulting in low N : P ratios in the water column. To study the impact of the N : P anomalies on the regional carbon cycle and their consequences for the export of nutrients from the NBUS into the oligotrophic subtropical gyre of the South Atlantic, we measured dissolved inorganic carbon (CT), total alkalinity (AT), oxygen (O2) and nutrient concentrations in February 2011. The results indicate increased P concentrations over the Namibian shelf due to P efflux from sediments resulting in a C : N : P : -O2 ratio of 106 : 16 : 1.6 : 138. N reduction further increase C : N and reduce N : P ratios in those regions where O2 concentrations in bottom waters are < 20 μmol kg−1. However, off the shelf along the continental margin, the mean C : N : P : -O2 ratio is again close to the Redfield stoichiometry. Additional nutrient data measured during two cruises in 2008 and 2009 imply that the amount of excess P, which is created in the bottom waters on the shelf, and its export into the subtropical gyre after upwelling varies through time. The results further reveal an inter-annual variability of excess N within the South Atlantic Central Water (SACW) that flows from the north into the NBUS, with highest N values observed in 2008. It is postulated that the N excess in SACW occurred due to the impact of remineralized organic matter produced by N2 fixation and that the magnitude of excess P formation and its export is governed by inputs of excess N along with SACW flowing into the NBUS. Factors controlling N2 fixation north of the BUS need to be addressed in future studies to better understand the role of the NBUS as a P source and N sink in the coupled C : N : P cycles.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tim Rixen ◽  
Niko Lahajnar ◽  
Tarron Lamont ◽  
Rolf Koppelmann ◽  
Bettina Martin ◽  
...  

The Benguela Upwelling System in the southeast Atlantic Ocean is of crucial socio-economic importance due to its high productivity. However, predicting its response to global change and understanding past changes are still great challenges. Here, we compile data obtained from a research cruise and an oceanographic mooring to demonstrate that a topographically steered nutrient trapping zone develops in a narrow belt along the coast during the main upwelling season in austral spring and summer in the southern Benguela Upwelling System. High nutrient concentrations within this zone increase the impact of upwelling on the productivity of the southern Benguela Upwelling System, but the efficient nutrient trapping operates at the expense of decreasing oxygen concentrations. This enhances the probability of anoxic events emerging toward the end of the upwelling season. However, at the end of the upwelling season, the front that separates the coastally trapped waters from open shelf waters weakens or even collapses due to upwelling cessation and the reversing current regime. This, in addition to a stronger vertical mixing caused by winter cooling, fosters the ventilation of the nutrient trapping zone, which reestablishes during the following upwelling season. The postulated intensification of upwelling and changes in the ecosystem structure in response to global warming seem to reduce the nutrient trapping efficiency by increasing offshore advection of surface waters and plankton blooms. The intensified upwelling and resulting lower biological oxygen consumption appears to mask the expected impacts of global warming on the oxygen minimum zone (OMZ) in the southern Benguela Upwelling System. In contrast to other OMZs, including those in northern Benguela Upwelling Systems, the OMZ in the southern Benguela Upwelling System reveals so far no detectable long-term decrease in oxygen. Thus, the nutrient trapping efficiency seems to be a critical feature mitigating global change impacts on the southern Benguela Upwelling System. Since it is topographically steered, regional impacts on the nutrient trapping efficiency appear also to explain varying responses of upwelling systems to global change as the comparison between southern and northern Benguela Upwelling System shows. This emphasizes the need for further and more comparable studies in order to better understand the response of Eastern Boundary Upwelling Systems and their ecosystem services to global change.


2020 ◽  
Author(s):  
Kristin Anna Ungerhofer ◽  
Gert-Jan Reichart ◽  
Peter Kraal

&lt;p&gt;The Benguela upwelling system (BUS) offshore Namibia is among the most productive ocean regions worldwide and is a globally important reservoir of biodiversity and biomass. The forcing of cold, nutrient-rich deep waters up the coastal shelf leads to high rates of primary productivity in surface waters, intense carbon remineralization and consequently to (bottom water) oxygen depletion on the shelf that varies temporally and spatially with the intensity of the upwelling.&lt;br&gt;Recurring events of deoxygenation have a severe impact on marine ecosystems, for instance increased mortality and altered biogeochemical cycles of key elements such as carbon (C), iron (Fe), phosphorus (P) and sulfur (S). Therefore, it is crucial that we establish a clear mechanistic framework of the impact of oxygen depletion on (global) biogeochemical cycles, not only to allow for the reconstruction of climate-ocean feedbacks in upwelling regions in the past, but to enable predictions of future behavior.&lt;br&gt;During an expedition with &lt;em&gt;RV Pelagia&lt;/em&gt; in February of 2019, we collected water column and sediment samples from the shelf and slope off Namibia (100 to 1517 m water depth, bottom water O&lt;sub&gt;2&lt;/sub&gt; between 0.5 and 175 &amp;#181;mol L&lt;sup&gt;-1&lt;/sup&gt;) and measured nutrient fluxes in on-board sediment incubations to understand the early diagenetic behavior of those key elements and trace metals underlying the (periodically) oxygen-depleted waters of the BUS.&lt;br&gt;We analyzed dissolved concentrations as well as solid-phase speciation of key elements such as iron (Fe), manganese (Mn), phosphorus (P) and sulfur (S) to understand the chemical and physical processes controlling their distribution along the depth/redox-transect.&lt;br&gt;Our results show intense P cycling on the shelf, as evidenced by very high pore-water P concentrations, an enhanced efflux of PO&lt;sub&gt;4&lt;/sub&gt; to suboxic bottom waters and indications of phosphorite formation at depth in the sediment. N/P ratios well below Redfield indicate N depletion and (relative) P accumulation in the water column, a shift in nutrient stoichiometry that can impact the composition of microbial communities in such waters. Meanwhile, the slope sediments are overlain by oxic bottom waters, retain P more efficiently and exhibit N/P ratios close to Redfield stoichiometry.&lt;br&gt;The capacity of the sediment to buffer toxic sulfide and prevent its release to the water column was dependent on the abundance of sulfide oxidizers at the sediment surface. Furthermore, the variable accumulation of sulfide affected Fe speciation and sedimentary P retention.&lt;br&gt;Overall, we show an intimate coupling between sedimentary cycles of essential elements in the Benguela upwelling system, a stark contrast between shelf and slope environments that is further enhanced by local variation of oxygen depletion and a very strong role of microbes in driving the cycles.&lt;/p&gt;


Author(s):  
N. D. Browning ◽  
M. M. McGibbon ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The recent development of the Z-contrast imaging technique for the VG HB501 UX dedicated STEM, has added a high-resolution imaging facility to a microscope used mainly for microanalysis. This imaging technique not only provides a high-resolution reference image, but as it can be performed simultaneously with electron energy loss spectroscopy (EELS), can be used to position the electron probe at the atomic scale. The spatial resolution of both the image and the energy loss spectrum can be identical, and in principle limited only by the 2.2 Å probe size of the microscope. There now exists, therefore, the possibility to perform chemical analysis of materials on the scale of single atomic columns or planes.In order to achieve atomic resolution energy loss spectroscopy, the range over which a fast electron can cause a particular excitation event, must be less than the interatomic spacing. This range is described classically by the impact parameter, b, which ranges from ~10 Å for the low loss region of the spectrum to <1Å for the core losses.


2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


2021 ◽  
Vol 775 ◽  
pp. 145020
Author(s):  
Isabel Fuentes-Santos ◽  
Uxío Labarta ◽  
María José Fernández-Reiriz ◽  
Susan Kay ◽  
Solfrid Sætre Hjøllo ◽  
...  

2001 ◽  
Vol 427 ◽  
pp. 73-105 ◽  
Author(s):  
LIOW JONG LENG

The impact of a spherical water drop onto a water surface has been studied experimentally with the aid of a 35 mm drum camera giving high-resolution images that provided qualitative and quantitative data on the phenomena. Scaling laws for the time to reach maximum cavity sizes have been derived and provide a good fit to the experimental results. Transitions between the regimes for coalescence-only, the formation of a high-speed jet and bubble entrapment have been delineated. The high-speed jet was found to occur without bubble entrapment. This was caused by the rapid retraction of the trough formed by a capillary wave converging to the centre of the cavity base. The converging capillary wave has a profile similar to a Crapper wave. A plot showing the different regimes of cavity and impact drop behaviour in the Weber–Froude number-plane has been constructed for Fr and We less than 1000.


2012 ◽  
Vol 140 (10) ◽  
pp. 3300-3326 ◽  
Author(s):  
Xiaoming Sun ◽  
Ana P. Barros

Abstract The influence of large-scale forcing on the high-resolution simulation of Tropical Storm Ivan (2004) in the southern Appalachians was investigated using the Weather Research and Forecasting model (WRF). Two forcing datasets were employed: the North American Regional Reanalysis (NARR; 32 km × 32 km) and the NCEP Final Operational Global Analysis (NCEP FNL; 1° × 1°). Simulated fields were evaluated against rain gauge, radar, and satellite data; sounding observations; and the best track from the National Hurricane Center (NHC). Overall, the NCEP FNL forced simulation (WRF_FNL) captures storm structure and evolution more accurately than the NARR forced simulation (WRF_NARR), benefiting from the hurricane initialization scheme in the NCEP FNL. Further, the performance of WRF_NARR is also negatively affected by a previously documented low-level warm bias in NARR. These factors lead to excessive precipitation in the Piedmont region, delayed rainfall in Alabama, as well as spatially displaced and unrealistically extreme rainbands during its passage over the southern Appalachians. Spatial filtering of the simulated precipitation fields confirms that the storm characteristics inherited from the forcing are critical to capture the storm’s impact at local places. Compared with the NHC observations, the storm is weaker in both NARR and NCEP FNL (up to Δp ~ 5 hPa), yet it is persistently deeper in all WRF simulations forced by either dataset. The surface wind fields are largely overestimated. This is attributed to the underestimation of surface roughness length over land, leading to underestimation of surface drag, reducing low-level convergence, and weakening the dissipation of the simulated cyclone.


Sign in / Sign up

Export Citation Format

Share Document