Numerical simulations of capillary spreading of a particle-laden droplet on a solid surface

2010 ◽  
Vol 210 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Hyun Jun Jeong ◽  
Wook Ryol Hwang ◽  
Chongyoup Kim ◽  
See Jo Kim
2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Hyun Jun Jeong ◽  
Wook Ryol Hwang ◽  
Chongyoup Kim

We present two-dimensional numerical simulations of the impact and spreading of a droplet containing a number of small particles on a flat solid surface, just after hitting the solid surface, to understand particle effects on spreading dynamics of a particle-laden droplet for the application to the industrial inkjet printing process. The Navier-Stokes equation is solved by a finite-element-based computational scheme that employs the level-set method for the accurate interface description between the drop fluid and air and a fictitious domain method for suspended particles to account for full hydrodynamic interaction. Focusing on the particle effect on droplet spreading and recoil behaviors, we report that suspended particles suppress the droplet oscillation and deformation, by investigating the drop deformations for various Reynolds numbers. This suppressed oscillatory behavior of the particulate droplet has been interpreted with the enhanced energy dissipation due to the presence of particles.


2007 ◽  
Vol 575 ◽  
pp. 399-424 ◽  
Author(s):  
R. HILLIER

This paper presents numerical simulations for the interaction of an expansion wave with an incident shock wave of the opposite family, the specific aim being to study the resultant reflection of the now-perturbed shock wave from a solid surface. This problem is considered in the context of an incident flow entering a parallel duct, a situation that commonly arises in a range of flow-turning problems including supersonic intake flows. Once the incident shock conditions are such that Mach reflection must occur, it is shown that stabilization of a simple Mach reflection is only possible for a narrow range of Mach numbers and that this depends sensitively on the relative streamwise positioning of the origins of the shock wave and the expansion wave.


2018 ◽  
Vol 846 ◽  
pp. 1076-1087 ◽  
Author(s):  
Andreas Carlson

In this theoretical and numerical study, we show how spatially extended fluctuations can influence and dominate the dynamics of a fluid filled elastic blister as it deforms onto a pre-wetted solid substrate. To describe the blister dynamics, we develop a stochastic elastohydrodynamic framework that couples the viscous flow, the elastic bending of the interface and the noise from the environment. We deploy a scaling analysis to find the elastohydrodynamic spreading law $\hat{R}\sim \hat{t}^{1/11}$, where $\hat{R}$ is the spreading radius and $\hat{t}$ is time, a direct analogue to the capillary spreading of drops, while the inclusion of noise in our model highlights that the dynamics speeds up significantly $\hat{R}\sim \hat{t}^{1/6}$ as local changes in curvature at the spreading front enhance the peeling of the elastic interface from the substrate. These fluctuations have a pronounced influence on the shape of the deforming blister and lead to the formation of a precursor film similar to a perfectly wetting droplet. Moreover, our analysis identifies a distinct criterion for the transition between the deterministic and the stochastic spreading regime, which is further illustrated by numerical simulations.


2010 ◽  
Vol 8 (5) ◽  
pp. 1009-1013 ◽  
Author(s):  
Ali Atwi ◽  
Antoine Khater ◽  
Abbas Hijazi

AbstractNumerical simulations are developed to calculate the dynamic equilibrium probability distribution functions (PDF) for macromolecular rod-like particles suspended in a fluid under hydrodynamic flow inside mesopores. The simulations take into account the effects of Brownian and hydrodynamic forces acting on the particles, as well as diffusive collisions of the particles with the solid surface boundaries. An algorithm is developed for this purpose based on Jeffery’s equations for the dynamics of ellipsoidal objects in bulk fluids, and on a mechanism of restitution for the diffusive collisions. The results are presented with a focus on the depletion layer next to two types of solid boundaries, ideally flat and rough. They demonstrate the significance of numerical simulations in 3D compared to previous results based on a 2D approach. In particular, we are able to obtain a complete topography for the PDFs segmented as a hierarchy in the depletion layer.


Author(s):  
Eric Johnsen ◽  
Tim Colonius ◽  
Wayne Kreider ◽  
Michael R. Bailey

In order to better understand the contribution of bubble collapse to stone comminution in shockwave lithotripsy, the shock-induced and Rayleigh collapse of a spherical air bubble is investigated using numerical simulations, and the free-field collapse of a cavitation bubble is studied experimentally. In shock-induced collapse near a wall, it is found that the presence of the bubble greatly amplifies the pressure recorded at the stone surface; the functional dependence of the wall pressure on the initial standoff distance and the amplitude are presented. In Rayleigh collapse near a solid surface, the proximity of the wall retards the flow and leads to a more prominent jet. Experiments show that re-entrant jets form in the collapse of cavitation bubbles excited by lithotripter shockwaves in a fashion comparable to previous studies of collapse near a solid surface.


2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


Sign in / Sign up

Export Citation Format

Share Document