Improvement of flame spraying PEEK coating characteristics using lasers

2011 ◽  
Vol 211 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Adriana Soveja ◽  
Pierre Sallamand ◽  
Hanlin Liao ◽  
Sophie Costil
2009 ◽  
Vol 19 (1-2) ◽  
pp. 439-447 ◽  
Author(s):  
A. Soveja ◽  
S. Costil ◽  
H. Liao ◽  
P. Sallamand ◽  
C. Coddet
Keyword(s):  

Author(s):  
H. Kreye ◽  
R. Schwetzke ◽  
S. Zimmermann

Abstract High velocity oxy-fuel (HVOF) spray experiments were carried out using various spray systems. A comparison is made of the systems introduced as a first and second generation (Jet Kote, Diamond Jet, Top Gun, CDS) with the more recently introduced systems of the third generation (JP 5000, DJ 2600, DJ 2700). The comparison is based on particle velocities and experiments to evaluate the heat transfer to the particles. The results show that the systems of the new generation with a converging-diverging nozzle section can produce up to 50% higher particle velocities. The higher kinetic energy allows to reduce the thermal energy and to reduce thermally activated phase transformations of the coating material during the spray process. Carbide coatings produced with one of the new HVOF systems exhibit a higher density, higher bond strength and higher hardness as compared to coatings produced with one of the systems of the first and second HVOF generation. Furthermore, the reduced thermal energy yields less oxidative loss of carbon and opens the possibility to spray coatings with neutral or compressive internal stresses, a prerequisite to produce carbide coatings up to a thickness of several millimeters.


Author(s):  
Dinar R. Masalimov ◽  
Roman R. Galiullin ◽  
Rinat N. Sayfullin ◽  
Azamat F. Fayurshin ◽  
Linar F. Islamov

There are a number of difficulties in the electrical contact welding of powder materials: shedding of powder from the surface of a cylindrical part, impossibility of hardening the layer during welding due to flushing of the powders with coolant and unstable flow of powder into the welding zone. One solution is pre-spraying the powder in some way. (Research purpose). The research purpose is investigating the possibility of electric contact welding of metal powders preliminarily sprayed by a gas-flame method, namely, adhesion strength and losses during preliminary gas-flame spraying of powders. (Materials and methods) Powders of grades PG-NA-01, PrKhIIG4SR, PRZh3.200.28 were sprayed onto flat samples of St3 steel, polished to a roughness of Ra 1.25. The strength of powder adhesion to the base was studied by the cut method. (Results and discussion) The percentage loss of the powder as a whole is 3-23 percent for all the distances studied. The greatest powder losses appear at a distance of more than 180 millimeter from the tip of the burner for powders of grades PG-NA-01 and PrKhIIG4SR. The smallest powder losses were observed for PrZh3.200.28 powder, which totaled 3-7 percent. The maximum adhesion strength of the sprayed powders to the surface was 22.1 megapascals' when spraying the PG-NA-01 powder. The adhesion strength of powders of the grades PrKhIIG4SR and PrZh3.200.28 is small and amounts to 0.2-3 megapascals'. (Conclusions) The use of preliminary flame spraying of powders for their further electric contact welding is possible using PG-NA-01 grade powder, while the best adhesion to the base (that is more than 20 megapascals') is achieved with a spraying distance of 120-140 millimeter. The smallest powder losses during flame spraying are achieved at a spraying distance of 100-160 centimeters', at which the powder loss for the studied grades was 4-12 percent.


2003 ◽  
Vol 57 (13-14) ◽  
pp. 2130-2134 ◽  
Author(s):  
Chang-Jiu Li ◽  
Guan-Jun Yang ◽  
Ze Wang

2012 ◽  
Vol 323-325 ◽  
pp. 373-379 ◽  
Author(s):  
B. Rannou ◽  
M. Mollard ◽  
B. Bouchaud ◽  
J. Balmain ◽  
G. Bonnet ◽  
...  

The use of thermal barrier coating systems allows superalloys to withstand higher operating temperatures in aeroengine turbines. Aiming at providing oxidation protection to such substrates, an aluminum-rich layer is deposited to form the α-Al2O3scale over which a ceramic layer (i.e. YSZ layer) is applied to provide thermal insulation. A new approach is now being investigated within the FP7 European project « PARTICOAT », in which a single step process is employed by applying micro-sized aluminum particles. The particles are mixed in a binder and deposited by brushing or spraying on the substrate surface. During a heat treatment, the particles sinter and oxidize to form a top coat composed of hollow con-joint alumina spheres and simultaneously, an Al-rich diffusion zone is formed in the substrate. For a better understanding of the diffusion / growth processes, preliminary tests were carried out on pure nickel and Ni20Cr model alloys prior to further application on commercial superalloys. The effect of the heat treatment on the coating characteristics (number of layers, thickness, composition, homogeneity, etc.) was particularly investigated to emphasize the mechanisms of diffusion governing the growth of the coatings. The establishment of the diffused layers occurred very readily even at intermediate temperatures (650 and 700°C). However, the layers formed did not match perfectly with the thermodynamic modeling because of the quick incorporation of Ni into molten Al at intermediate temperatures (650°C). In contrast, at higher temperatures (700 and 1100°C) the phases predicted by Thermocalc are in good agreement with the observed thickness of the diffused layers. The incorporation of Cr as an alloying element restrained Al ingress by segregation of Cr even at very low temperatures aluminizing temperatures (625°C).


2011 ◽  
Vol 690 ◽  
pp. 405-408 ◽  
Author(s):  
Joel Voyer

Partially amorphous iron-based coatings were produced onto aluminium using a powder flame-spraying process with a commercially available feedstock powder (Nanosteel SHS-7170) obtained from the Nanosteel Company Inc.. Several coating properties such as the microstructure, porosity, phase content, micro-hardness, and wear resistance were evaluated in the as-sprayed condition. As shown by the results obtained, the powder flame iron-based coatings perform relatively well in term of wear resistance in comparison with similar coatings produced using other expensive thermal spray techniques. Furthermore, this study shows that all the coating properties (microstructure, porosity, phase content, hardness and wear performance) depend strongly on the flame spraying parameters used. Finally, this paper demonstrates clearly that the flame-spray process may be used to produce amorphous iron-based coatings having a good wear resistance, and that this process appears to be a suitable inexpensive alternative to plasma or HVOF processes based on the present results.


Sign in / Sign up

Export Citation Format

Share Document