scholarly journals Co-evolutionary Analysis of Domains in Interacting Proteins Reveals Insights into Domain–Domain Interactions Mediating Protein–Protein Interactions

2006 ◽  
Vol 362 (4) ◽  
pp. 861-875 ◽  
Author(s):  
Raja Jothi ◽  
Praveen F. Cherukuri ◽  
Asba Tasneem ◽  
Teresa M. Przytycka
2016 ◽  
Author(s):  
Juan Rodriguez-Rivas ◽  
Simone Marsili ◽  
David Juan ◽  
Alfonso Valencia

AbstractProtein-protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue co-evolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that co-evolution points to structurally conserved contacts at protein-protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a novel domain-centred protocol to study the interplay between residue co-evolution and structural conservation of protein-protein interfaces. We show that sequence-based co-evolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein-protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence, where standard homology modelling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic co-evolutionary analysis to the prediction of eukaryotic interfaces further illustrates the potential of this novel approach.Significance statementInteracting proteins tend to co-evolve through interdependent changes at the interaction interface. This phenomenon leads to patterns of coordinated mutations that can be exploited to systematically predict contacts between interacting proteins in prokaryotes. We explore the hypothesis that co-evolving contacts at protein interfaces are preferentially conserved through long evolutionary periods. We demonstrate that co-evolving residues in prokaryotes identify inter-protein contacts that are particularly well conserved in the corresponding structure of their eukaryotic homologues. Therefore, these contacts have likely been important to maintain protein-protein interactions during evolution. We show that this property can be used to reliably predict interacting residues between eukaryotic proteins with homologues in prokaryotes even if they are very distantly related in sequence.


2012 ◽  
Vol 6 (Suppl 1) ◽  
pp. S7 ◽  
Author(s):  
Chen Chen ◽  
Jun-Fei Zhao ◽  
Qiang Huang ◽  
Rui-Sheng Wang ◽  
Xiang-Sun Zhang

2019 ◽  
Author(s):  
Guillaume Marmier ◽  
Martin Weigt ◽  
Anne-Florence Bitbol

AbstractDetermining which proteins interact together is crucial to a systems-level understanding of the cell. Recently, algorithms based on Direct Coupling Analysis (DCA) pairwise maximum-entropy models have allowed to identify interaction partners among the paralogs of ubiquitous prokaryotic proteins families, starting from sequence data alone. Since DCA allows to infer the three-dimensional structure of protein complexes, its success in predicting protein-protein interactions could be mainly based on contacting residues coevolving to remain physicochemically complementary. However, interacting proteins often possess similar evolutionary histories, which also gives rise to correlations among their sequences. What is the role of purely phylogenetic correlations in the performance of DCA-based methods to infer interaction partners? To address this question, we employ controlled synthetic data that only involves phylogeny and no interactions or contacts. We find that DCA accurately identifies the pairs of synthetic sequences that only share evolutionary history. It performs as well as methods explicitly based on sequence similarity, and even slightly better with large and accurate training sets. We further demonstrate the ability of these various methods to correctly predict pairings among actual paralogous proteins with genome proximity but no known direct physical interaction, which illustrates the importance of phylogenetic correlations in real data. However, for actually interacting and strongly coevolving proteins, DCA and mutual information outperform sequence similarity.Author summaryMany biologically important protein-protein interactions are conserved over evolutionary time scales. This leads to two different signals that can be used to computationally predict interactions between protein families and to identify specific interaction partners. First, the shared evolutionary history leads to highly similar phylogenetic relationships between interacting proteins of the two families. Second, the need to keep the interaction surfaces of partner proteins biophysically compatible causes a correlated amino-acid usage of interface residues. Employing simulated data, we show that the shared history alone can be used to detect partner proteins. Similar accuracies are achieved by algorithms comparing phylogenetic relationships and by coevolutionary methods based on Direct Coupling Analysis, which are a priori designed to detect the second type of signal. Using real sequence data, we show that in cases with shared evolutionary but without known physical interactions, both methods work with similar accuracy, while for physically interacting systems, methods based on correlated amino-acid usage outperform purely phylogenetic ones.


Author(s):  
Morihiro Hayashida ◽  
Tatsuya Akutsu

Protein-protein interactions play various essential roles in cellular systems. Many methods have been developed for inference of protein-protein interactions from protein sequence data. In this paper, the authors focus on methods based on domain-domain interactions, where a domain is defined as a region within a protein that either performs a specific function or constitutes a stable structural unit. In these methods, the probabilities of domain-domain interactions are inferred from known protein-protein interaction data and protein domain data, and then prediction of interactions is performed based on these probabilities and contents of domains of given proteins. This paper overviews several fundamental methods, which include association method, expectation maximization-based method, support vector machine-based method, linear programming-based method, and conditional random field-based method. This paper also reviews a simple evolutionary model of protein domains, which yields a scale-free distribution of protein domains. By combining with a domain-based protein interaction model, a scale-free distribution of protein-protein interaction networks is also derived.


Author(s):  
Tatsuya Akutsu ◽  
Morihiro Hayashida

Many methods have been proposed for inference of protein-protein interactions from protein sequence data. This chapter focuses on methods based on domain-domain interactions, where a domain is defined as a region within a protein that either performs a specific function or constitutes a stable structural unit. In these methods, the probabilities of domain-domain interactions are inferred from known protein-protein interaction data and protein domain data, and then prediction of interactions is performed based on these probabilities and contents of domains of given proteins. This chapter overviews several fundamental methods, which include association method, expectation maximization-based method, support vector machine-based method, and linear programmingbased method. This chapter also reviews a simple evolutionary model of protein domains, which yields a scalefree distribution of protein domains. By combining with a domain-based protein interaction model, a scale-free distribution of protein-protein interaction networks is also derived.


Biotechnology ◽  
2019 ◽  
pp. 406-427
Author(s):  
Morihiro Hayashida ◽  
Tatsuya Akutsu

Protein-protein interactions play various essential roles in cellular systems. Many methods have been developed for inference of protein-protein interactions from protein sequence data. In this paper, the authors focus on methods based on domain-domain interactions, where a domain is defined as a region within a protein that either performs a specific function or constitutes a stable structural unit. In these methods, the probabilities of domain-domain interactions are inferred from known protein-protein interaction data and protein domain data, and then prediction of interactions is performed based on these probabilities and contents of domains of given proteins. This paper overviews several fundamental methods, which include association method, expectation maximization-based method, support vector machine-based method, linear programming-based method, and conditional random field-based method. This paper also reviews a simple evolutionary model of protein domains, which yields a scale-free distribution of protein domains. By combining with a domain-based protein interaction model, a scale-free distribution of protein-protein interaction networks is also derived.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1107
Author(s):  
Youjun Zhang ◽  
Alisdair R. Fernie

Protein–protein assemblies are highly prevalent in all living cells. Considerable evidence has recently accumulated suggesting that particularly transient association/dissociation of proteins represent an important means of regulation of metabolism. This is true not only in the cytosol and organelle matrices, but also at membrane surfaces where, for example, receptor complexes, as well as those of key metabolic pathways, are common. Transporters also frequently come up in lists of interacting proteins, for example, binding proteins that catalyze the production of their substrates or that act as relays within signal transduction cascades. In this review, we provide an update of technologies that are used in the study of such interactions with mitochondrial transport proteins, highlighting the difficulties that arise in their use for membrane proteins and discussing our current understanding of the biological function of such interactions.


Author(s):  
Piyali Chatterjee ◽  
Subhadip Basu ◽  
Mahantapas Kundu ◽  
Mita Nasipuri ◽  
Dariusz Plewczynski

AbstractProtein-protein interactions (PPI) control most of the biological processes in a living cell. In order to fully understand protein functions, a knowledge of protein-protein interactions is necessary. Prediction of PPI is challenging, especially when the three-dimensional structure of interacting partners is not known. Recently, a novel prediction method was proposed by exploiting physical interactions of constituent domains. We propose here a novel knowledge-based prediction method, namely PPI_SVM, which predicts interactions between two protein sequences by exploiting their domain information. We trained a two-class support vector machine on the benchmarking set of pairs of interacting proteins extracted from the Database of Interacting Proteins (DIP). The method considers all possible combinations of constituent domains between two protein sequences, unlike most of the existing approaches. Moreover, it deals with both single-domain proteins and multi domain proteins; therefore it can be applied to the whole proteome in high-throughput studies. Our machine learning classifier, following a brainstorming approach, achieves accuracy of 86%, with specificity of 95%, and sensitivity of 75%, which are better results than most previous methods that sacrifice recall values in order to boost the overall precision. Our method has on average better sensitivity combined with good selectivity on the benchmarking dataset. The PPI_SVM source code, train/test datasets and supplementary files are available freely in the public domain at: http://code.google.com/p/cmater-bioinfo/.


Sign in / Sign up

Export Citation Format

Share Document