Structures of Glycinamide Ribonucleotide Transformylase (PurN) from Mycobacterium tuberculosis Reveal a Novel Dimer with Relevance to Drug Discovery

2009 ◽  
Vol 389 (4) ◽  
pp. 722-733 ◽  
Author(s):  
Zhening Zhang ◽  
Tom T. Caradoc-Davies ◽  
James M. Dickson ◽  
Edward N. Baker ◽  
Christopher J. Squire
Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1205 ◽  
Author(s):  
Riccardo Miggiano ◽  
Castrese Morrone ◽  
Franca Rossi ◽  
Menico Rizzi

Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis (TB), an ancient disease which still today causes 1.4 million deaths worldwide per year. Long-term, multi-agent anti-tubercular regimens can lead to the anticipated non-compliance of the patient and increased drug toxicity, which in turn can contribute to the emergence of drug-resistant MTB strains that are not susceptible to first- and second-line available drugs. Hence, there is an urgent need for innovative antitubercular drugs and vaccines. A number of biochemical processes are required to maintain the correct homeostasis of DNA metabolism in all organisms. Here we focused on reviewing our current knowledge and understanding of biochemical and structural aspects of relevance for drug discovery, for some such processes in MTB, and particularly DNA synthesis, synthesis of its nucleotide precursors, and processes that guarantee DNA integrity and genome stability. Overall, the area of drug discovery in DNA metabolism appears very much alive, rich of investigations and promising with respect to new antitubercular drug candidates. However, the complexity of molecular events that occur in DNA metabolic processes requires an accurate characterization of mechanistic details in order to avoid major flaws, and therefore the failure, of drug discovery approaches targeting genome integrity.


Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 149 ◽  
Author(s):  
Yan Xie ◽  
Yunjiang Feng ◽  
Angela Di Capua ◽  
Tin Mak ◽  
Garry W. Buchko ◽  
...  

In recent years, there has been a revival of interest in phenotypic-based drug discovery (PDD) due to target-based drug discovery (TDD) falling below expectations. Both PDD and TDD have their unique advantages and should be used as complementary methods in drug discovery. The PhenoTarget approach combines the strengths of the PDD and TDD approaches. Phenotypic screening is conducted initially to detect cellular active components and the hits are then screened against a panel of putative targets. This PhenoTarget protocol can be equally applied to pure compound libraries as well as natural product fractions. Here we described the use of the PhenoTarget approach to identify an anti-tuberculosis lead compound. Fractions from Polycarpa aurata were identified with activity against Mycobacterium tuberculosis H37Rv. Native magnetic resonance mass spectrometry (MRMS) against a panel of 37 proteins from Mycobacterium proteomes showed that a fraction from a 95% ethanol re-extraction specifically formed a protein-ligand complex with Rv1466, a putative uncharacterized Mycobacterium tuberculosis protein. The natural product responsible was isolated and characterized to be polycarpine. The molecular weight of the ligand bound to Rv1466, 233 Da, was half the molecular weight of polycarpine less one proton, indicating that polycarpine formed a covalent bond with Rv1466.


2020 ◽  
Vol 10 (7) ◽  
pp. 2339 ◽  
Author(s):  
Caroline Shi-Yan Foo ◽  
Kevin Pethe ◽  
Andréanne Lupien

New drugs with new mechanisms of action are urgently required to tackle the global tuberculosis epidemic. Following the FDA-approval of the ATP synthase inhibitor bedaquiline (Sirturo®), energy metabolism has become the subject of intense focus as a novel pathway to exploit for tuberculosis drug development. This enthusiasm stems from the fact that oxidative phosphorylation (OxPhos) and the maintenance of the transmembrane electrochemical gradient are essential for the viability of replicating and non-replicating Mycobacterium tuberculosis (M. tb), the etiological agent of human tuberculosis (TB). Therefore, new drugs targeting this pathway have the potential to shorten TB treatment, which is one of the major goals of TB drug discovery. This review summarises the latest and key findings regarding the OxPhos pathway in M. tb and provides an overview of the inhibitors targeting various components. We also discuss the potential of new regimens containing these inhibitors, the flexibility of this pathway and, consequently, the complexity in targeting it. Lastly, we discuss opportunities and future directions of this drug target space.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Divneet Kaur ◽  
Rintu Kutum ◽  
Debasis Dash ◽  
Samir K. Brahmachari

Abstract We report the construction of a novel Systems Biology based virtual drug discovery model for the prediction of non-toxic metabolic targets in Mycobacterium tuberculosis (Mtb). This is based on a data-intensive genome level analysis and the principle of conservation of the evolutionarily important genes. In the 1623 sequenced Mtb strains, 890 metabolic genes identified through a systems approach in Mtb were evaluated for non-synonymous mutations. The 33 genes showed none or one variation in the entire 1623 strains, including 1084 Russian MDR strains. These invariant targets were further evaluated for their experimental and in silico essentiality as well as availability of their crystal structure in Protein Data Bank (PDB). Along with this, targets for the common existing antibiotics and the new Tb drug candidates were also screened for their variation across 1623 strains of Mtb for understanding the drug resistance. We propose that the reduced set of these reported targets could be a more effective starting point for medicinal chemists in generating new chemical leads. This approach has the potential of fueling the dried up Tuberculosis (Tb) drug discovery pipeline.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63240 ◽  
Author(s):  
Sean Ekins ◽  
Robert C. Reynolds ◽  
Scott G. Franzblau ◽  
Baojie Wan ◽  
Joel S. Freundlich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document