Electrochemical corrosion behavior and mechanical properties of Ti–Ag biomedical alloys obtained by two powder metallurgy processing routes

Author(s):  
J.C. Zambrano Carrullo ◽  
A. Dalmau Borrás ◽  
V. Amigó Borrás ◽  
J. Navarro-Laboulais ◽  
J.C. Pereira Falcón
Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 986
Author(s):  
Jozef Minda ◽  
Stanislava Fintová ◽  
Branislav Hadzima ◽  
Pavel Doležal ◽  
Michaela Hasoňová ◽  
...  

Pure Mg samples were prepared by powder metallurgy using the cold and hot compacting methods. Cold compacted pure Mg (500 MPa/RT) was characterized by 5% porosity and the mechanical bonding of powder particles. Hot compacted samples (100 MPa/400 °C and 500 MPa/400 °C) exhibited porosity below 0.5%, and diffusion bonding combined with mechanical bonding played a role in material compaction. The prepared pure Mg samples and wrought pure Mg were subjected to corrosion tests using electrochemical impedance spectroscopy. Similar material corrosion behavior was observed for the samples compacted at 500 MPa/RT and 100 MPa/400 °C; however, hot compacted samples processed at 500 MPa/400 °C exhibited longer corrosion resistance in 0.9% NaCl solution. The difference in corrosion behavior was mainly related to the different binding mechanisms of the powder particles. Cold compacted samples were characterized by a more pronounced corrosion attack and the creation of a porous layer of corrosion products. Hot compacted samples prepared at 500 MPa/400 °C were characterized by uniform corrosion and the absence of a layer of corrosion products on the specimen surface. Powder-based cold compacted samples exhibited lower corrosion resistance compared to the wrought pure Mg, while the corrosion behavior of the hot compacted samples prepared at 500 MPa/400 °C was similar to that of wrought material.


2017 ◽  
Vol 49 (4) ◽  
pp. 399-407 ◽  
Author(s):  
Zhengquan Jia ◽  
Zuoxing Guo ◽  
Qiulin Wei ◽  
Jingjuan Li ◽  
Liang Zhao ◽  
...  

Zinc-substituted hydroxyapatite (Zn-HA, Ca10-xZnx(PO4)6(OH)2) is used as the modified material of hydroxyapatite (HA, Ca10 (PO4)6(OH)2). In this work, Zn-HA with Zn contents of 10-30 mol% was used to produce Zn-HA/Mg composites by powder metallurgy. The calculated results showed that the crystallite size and lattice parameters of Zn-HA powders varied with the contents of 0-30 mol% Zn, confirming that the divalent Zn2+ ions can substitute Ca2+ ions in HA. Furthermore, the microstructure, mechanical property and electrochemical corrosion behavior of Zn-HA/Mg composites were investigated by SEM, compression tests, and electrochemical corrosion tests, respectively. The results indicate that the highest density and lowest porosity are obtained and the optimal mechanical property and corrosion resistance are achieved in the Zn-HA/Mg composites with 20 mol% Zn.


2011 ◽  
Vol 311-313 ◽  
pp. 1735-1740
Author(s):  
Xue Song Li ◽  
Li Dong Wang ◽  
Jian Wu Zhao ◽  
Jian Sheng Liu ◽  
Li Min Wang

Mg-1Zn-0.5Ca alloy was prepared by casting technology. The as-cast alloy was solution treated at 470°C for 24 h and aged at 175°C for 0-50 h. The microstructure, mechanical properties and electrochemical corrosion behavior of the alloys were investigated. The results showed that the average grain size of the as-cast alloy was 120-150 μm, and the precipitated phases were distributed uniformly in α-Mg grain. The as-cast alloy showed good mechanical properties. The tensile strength was 186 MPa, and ductility was 23%. A typical age softening responses was obtained during the aging treatment. In the electrochemical corrosion tests, corrosion of the alloys is improved in Hank’s solution and 3.5wt% NaCl solution after the solution and aged treatment. However, the aged treated alloys showed the better electrochemical corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document