Magnetic particles for medical applications by glass crystallisation

2004 ◽  
Vol 272-276 ◽  
pp. 1539-1541 ◽  
Author(s):  
R. Müller ◽  
H. Steinmetz ◽  
R. Hiergeist ◽  
W. Gawalek
2010 ◽  
Vol 148 (1) ◽  
pp. e68-e70
Author(s):  
M. Visscher ◽  
M. Sobik ◽  
B. ten Haken ◽  
H. Rogalla

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 386 ◽  
Author(s):  
Ziyin Xiang ◽  
Khao-Iam Jakkpat ◽  
Benjamin Ducharne ◽  
Jean-Fabien Capsal ◽  
Jean-François Mogniotte ◽  
...  

This study aims to enhance the low-frequency induction heating (LFIH) effect in a thermoplastic polymer doped with iron oxide magnetic particles, which are promising candidates for several medical applications thanks to their confirmed biocompatibility. Two main approaches were proposed to successfully boost the heating ability; i.e., improving the magnetic concentration of the composite with higher filler content of 30 wt %, and doubling the frequency excitation after optimization of the inductor design. To test the magnetic properties of the ferromagnetic composite, a measurement of permeability as a function of temperature, frequency, and particle content was carried out. Thermal transfer based COMSOL simulations together with experimental tests have been performed, demonstrating feasibility of the proposed approach to significantly enhance the target temperature in a magnetic composite. These results are encouraging and confirmed that IH can be exploited in medical applications, especially for the treatment of varicose veins where local heating remains a true challenge.


Author(s):  
M.D. Bentzon ◽  
J. v. Wonterghem ◽  
A. Thölén

We report on the oxidation of a magnetic fluid. The oxidation results in magnetic super lattice crystals. The “atoms” are hematite (α-Fe2O3) particles with a diameter ø = 6.9 nm and they are covered with a 1-2 nm thick layer of surfactant molecules.Magnetic fluids are homogeneous suspensions of small magnetic particles in a carrier liquid. To prevent agglomeration, the particles are coated with surfactant molecules. The magnetic fluid studied in this work was produced by thermal decomposition of Fe(CO)5 in Declin (carrier liquid) in the presence of oleic acid (surfactant). The magnetic particles consist of an amorphous iron-carbon alloy. For TEM investigation a droplet of the fluid was added to benzine and a carbon film on a copper net was immersed. When exposed to air the sample starts burning. The oxidation and electron irradiation transform the magnetic particles into hematite (α-Fe2O3) particles with a median diameter ø = 6.9 nm.


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1817-C8-1818 ◽  
Author(s):  
S. McVitie ◽  
J. N. Chapman ◽  
S. J. Hefferman ◽  
W. A. P. Nicholson

1976 ◽  
Vol 15 (02) ◽  
pp. 69-74
Author(s):  
M. Goldberg ◽  
B. Doyon

This paper describes a general data base management package, devoted to medical applications. SARI is a user-oriented system, able to take into account applications very different by their nature, structure, size, operating procedures and general objectives, without any specific programming. It can be used in conversational mode by users with no previous knowledge of computers, such as physicians or medical clerks.As medical data are often personal data, the privacy problem is emphasized and a satisfactory solution implemented in SARI.The basic principles of the data base and program organization are described ; specific efforts have been made in order to increase compactness and to make maintenance easy.Several medical applications are now operational with SARI. The next steps will mainly consist in the implementation of highly sophisticated functions.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


Sign in / Sign up

Export Citation Format

Share Document