Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition

2011 ◽  
Vol 323 (5) ◽  
pp. 569-573 ◽  
Author(s):  
Ping Hu ◽  
De-an Pan ◽  
Xin-feng Wang ◽  
Jian-jun Tian ◽  
Jian Wang ◽  
...  
1992 ◽  
Vol 57 (12) ◽  
pp. 2475-2480 ◽  
Author(s):  
Milan Brutovský ◽  
Štefan Gerej ◽  
Ján Novák ◽  
Lucia Ferdinandyová

Catalysts were prepared from VOPO4.xH2O.yH3PO4 (x = 0.3-2, y = 0.2-0.85) by reduction with SO2 up to a final temperature of 750-800 °C, and activated in a reaction mixture of 1.0-1.4% butane in air up to 500 °C. The structure characteristics and phase composition of the catalysts were found to be affected by the preparation procedure and heat treatment regime. Their diffraction lines and IR spectra revealed that the catalysts from larger and less defective crystals than catalysts which were obtained from the VOHPO4.xH2O.yH3PO4 precursor and activated in the reaction mixture at temperatures up to 500 °C. In the catalysts prepared by the above procedure, the tendency to the formation of phases of higher-condensed phosphates, in particular VO(PO3)2 or even V(PO3)3, increases with increasing n(P):n(V) ratio and is then more pronounced than with vanadium-phosphorus catalysts prepared by other procedures. The tendency to the formation of the catalytically less active condensed phosphates is partly suppressed by the embedding of modifying metal cations (Fe or Cu in this case).


Author(s):  
Aaditya Srivastava ◽  
Ansh Jain ◽  
Shubham Rajput ◽  
Hari Om Singh ◽  
Bhaskar Chandra Kandpal ◽  
...  

2015 ◽  
Vol 651-653 ◽  
pp. 677-682 ◽  
Author(s):  
Anatoliy Popovich ◽  
Vadim Sufiiarov ◽  
Evgenii Borisov ◽  
Igor Polozov

The article presents results of a study of phase composition and microstructure of initial material and samples obtained by selective laser melting of titanium-based alloy, as well as samples after heat treatment. The effect of heat treatment on microstructure and mechanical properties of specimens was shown. It was studied mechanical behavior of manufactured specimens before and after heat treatment at room and elevated temperatures as well. The heat treatment allows obtaining sufficient mechanical properties of material at room and elevated temperatures such as increase in ductility of material. The fractography of samples showed that they feature ductile fracture with brittle elements.


2010 ◽  
Vol 150-151 ◽  
pp. 1409-1412 ◽  
Author(s):  
Tao Jiang

The Fe3Al/Al2O3 composites were fabricated by pressureless sintering process. The Fe3Al intermetallics compounds powders were fabricated by mechanical alloying and heat treatment, then the Fe3Al powders and Al2O3 powders were mixed and the Fe3Al/Al2O3 composite powders were prepared, so the Fe3Al/Al2O3 composites were fabricated by sintering process at 1700oC for 2h. The phase composition and microstructure of Fe3Al intermetallics compounds powders produced by mechanical alloying and heat treatment were investigated. The phase composition, microstructure and mechanical properties of the Fe3Al/Al2O3 composites sintered bulks were investigated. The XRD patterns results showed that there existed Fe3Al phase and Al2O3 phase in the sintered composites. The Fe3Al/Al2O3 composites sintered bulks exhibited the homogenous and compact microstructure, the Fe3Al particles were homogenously distributed in the Al2O3 matrix, the mean particles size of Fe3Al intermetallics was about 3-5μm. The Fe3Al/Al2O3 composites exhibited more homogenous and compact microstructure with the increase of Fe3Al content in the Al2O3 matrix. The density and relative density of the Fe3Al/Al2O3 composites increased gradually with the increase of Fe3Al content. The fracture strength and fracture toughness of the Fe3Al/Al2O3 composites increased gradually with the increase of Fe3Al content. The elastic modulus and hardness (HRA) of the Fe3Al/Al2O3 composites decreased gradually with the increase of Fe3Al content.


2003 ◽  
Vol 392-396 ◽  
pp. 175-180
Author(s):  
N. Watanabe ◽  
R. Hareyama ◽  
T. Machi ◽  
S. Arai ◽  
N. Koshizuka ◽  
...  

1997 ◽  
Vol 38 (9-10) ◽  
pp. 383-387
Author(s):  
S. M. Logvinkov ◽  
G. D. Semchenko ◽  
D. A. Kobyzeva

Author(s):  
G.V. Shlyakhova ◽  
◽  
A.V. Bochkareva ◽  
M.V. Nadezhkin ◽  
◽  
...  

This study presents experimental results of structural analysis, such as phase composition, grains size assessment, strength and hardness of Ni-SPAN-C alloy 902 after various heat treatment modes (hardening and aging for stress relaxation). A thermal treatment mode has been selected to obtain higher physical and mechanical properties of the elinvar alloy. It is shown that the improvement of the alloy structure in thermal treatment occurs due to the thermic stresses, as well as the formation and dissolution of intermetallides.


Author(s):  
E.G. Astafurova ◽  
◽  
K.A. Reunova ◽  
S.V. Astafurov ◽  
M.Yu. Panchenko ◽  
...  

We investigated the phase composition, plastic deformation and fracture micromechanisms of Fe-(25-26)Cr-(5-12)Mn-0.15C-0.55N (wt. %) high-nitrogen chromium-manganese steel. Obtained by the method of electron-beam 3D-printing (additive manufacturing) and subjected to a heat treatment (at a temperature of 1150°C following by quenching). To establish the effect of the electron-beam 3D-printing process on the phase composition, microstructure and mechanical properties of high-nitrogen steel, a comparison was made with the data for Fe-21Cr-22Mn-0.15C-0.53N austenitic steel (wt. %) obtained by traditional methods (casting and heat treatment) and used as a raw material for additive manufacturing. It was experimentally established that in the specimens obtained by additive manufacturing method, depletion of the steel composition by manganese in the electron-beam 3D-printing and post-built heat treatment contributes to the formation of a macroscopically and microscopically inhomogeneous two-phase structure. In the steel specimens, macroscopic regions of irregular shape with large ferrite grains or a two-phase austenite-ferrite structure (microscopic inhomogeneity) were observed. Despite the change in the concentration of the basic elements (chromium and manganese) in additive manufacturing, a high concentration of interstitial atoms (nitrogen and carbon) remains in steel. This contributes to the macroscopically heterogeneous distribution of interstitial atoms in the specimens - the formation of a supersaturated interstitial solid solution in the austenitic regions due to the low solubility of nitrogen and carbon in the ferrite regions. This inhomogeneous heterophase (ferrite-austenite) structure has high strength properties, good ductility and work hardening, which are close to those of the specimens of the initial high-nitrogen austenitic steel used as the raw material for additive manufacturing.


1993 ◽  
Vol 29 (1) ◽  
pp. 56-60 ◽  
Author(s):  
O. I. Eliseeva ◽  
V. I. Kalyandruk ◽  
A. A. Denisova ◽  
V. V. Shirokov

Sign in / Sign up

Export Citation Format

Share Document