Microstructure and Mechanical Properties of Ti-6Al-4V Manufactured by SLM

2015 ◽  
Vol 651-653 ◽  
pp. 677-682 ◽  
Author(s):  
Anatoliy Popovich ◽  
Vadim Sufiiarov ◽  
Evgenii Borisov ◽  
Igor Polozov

The article presents results of a study of phase composition and microstructure of initial material and samples obtained by selective laser melting of titanium-based alloy, as well as samples after heat treatment. The effect of heat treatment on microstructure and mechanical properties of specimens was shown. It was studied mechanical behavior of manufactured specimens before and after heat treatment at room and elevated temperatures as well. The heat treatment allows obtaining sufficient mechanical properties of material at room and elevated temperatures such as increase in ductility of material. The fractography of samples showed that they feature ductile fracture with brittle elements.

2015 ◽  
Vol 1120-1121 ◽  
pp. 1269-1275
Author(s):  
Anatoly A. Popovich ◽  
Vadim Sh. Sufiiarov ◽  
Igor A. Polozov ◽  
Evgenii V. Borisov ◽  
Maxim Y. Maximov

The article presents the results of selective laser melting of Ti-6Al-4V alloy. It was studied phase composition and microstructure of the initial powder material, the specimens manufactured by Selective Laser Melting and also the specimens after heat treatment. The effect of heat treatment on microstructure and mechanical properties of the specimens was shown. It was studied the mechanical behavior of the manufactured specimens before and after heat treatment at room and elevated temperatures as well. After heat treatment tests showed that the specimens have decent mechanical properties both at room and elevated temperatures.


2015 ◽  
Vol 651-653 ◽  
pp. 665-670 ◽  
Author(s):  
Anatoly A. Popovich ◽  
Vadim Sh. Sufiiarov ◽  
Igor A. Polozov ◽  
Evgenii V. Borisov

The article presents results of selective laser melting of Inconel 718 superalloy. It was studied phase microstructure of the material obtained by selective laser melting and also the material after heat treatment. The phase composition of the initial powder material, the specimens after selective laser melting before and after heat treatment was studied. The effect of heat treatment on microstructure and mechanical properties of the specimens was shown. It was studied the mechanical behavior of the manufactured specimens before and after heat treatment at room and elevated temperatures as well. The results of impact tests and fractography of the specimens are presented. Mechanical tests showed that the specimens after heat treatment have decent mechanical properties comparable to hot-rolled material. Fractography showed that the obtained material is characterized by ductile failure mode with local elements of brittle fracture.


2020 ◽  
Vol 26 (8) ◽  
pp. 1379-1387
Author(s):  
Wangping Wu ◽  
Xiang Wang ◽  
Qun Wang ◽  
Jianwen Liu ◽  
Yi Zhang ◽  
...  

Purpose The purpose of this paper is to maraging 18Ni-300 steel fabricate by powder bed based selective laser melting (SLM) process. Microstructure and mechanical properties of the maraging steel part before and after heat treatment at a slow cooling rate were investigated. Design/methodology/approach The microstructure of the printed part was observed by optical microscopy and scanning electron microscopy. The phases were determined by X-ray diffraction. The surface roughness of the part was recorded by a profilometer. The tensile properties and microhardness of the parts before and after heat treatment were characterized by an electronic universal tensile testing machine and a Vickers hardness tester, respectively. Findings Maraging 18Ni-300 steel part comprised of the martensitic phase and a small fraction of austenite phase. After heat treatment, the volume fraction of austenite slightly increased. The surface roughness of the part was about 96 µm. The printed part was dense, but irregular pores were present. The yield strength, ultimate tensile strength (UTS), elongation and Young’s modulus of as-fabricated parts were 554.7 MPa, 1173.1 MPa, 10.9% and 128.9 GPa, respectively. The yield strength, UTS, elongation and Young’s modulus of as-treated parts were 2065 MPa, 2225 MPa, 4.2% and 142.5 GPa, respectively. The microhardness values of surface and cross-section of the as-fabricated part were 407.1 HV and 443.0 HV, respectively. After short-time heat treatment, the microhardness values of the surface and cross-section of the part were 542.7 HV and 567.3 HV, respectively. After long-time heat treatment, the microhardness values of the surface and cross-section of the part were 524.4 HV and 454.8 HV, respectively. The microhardness and tensile strength increased significantly with decreasing elongation due to the changes in phases and microstructure of the parts after heat treatment. Originality/value This work studied the effect of heat treatment at 550°C combined with a subsequent slow cooling rate on microstructure and mechanical properties of maraging 18Ni-300 steel obtained by the powder bed based SLM process.


2018 ◽  
Vol 284 ◽  
pp. 615-620 ◽  
Author(s):  
R.M. Baitimerov ◽  
P.A. Lykov ◽  
L.V. Radionova

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.


2017 ◽  
Vol 44 (9) ◽  
pp. 0902001
Author(s):  
肖振楠 Xiao Zhennan ◽  
刘婷婷 Liu Tingting ◽  
廖文和 Liao Wenhe ◽  
张长东 Zhang Changdong ◽  
杨涛 Yang Tao

2019 ◽  
Vol 944 ◽  
pp. 64-72
Author(s):  
Qing Feng Yang ◽  
Cun Juan Xia ◽  
Ya Qi Deng

Bulky sample was made by using TIG wire and arc additive manufacturing (WAAM) technology, in which Ф1.6 mm filler wire of in-situ TiB2/Al-Si composites was selected as deposition metal, following by T6 heat treatment. The microstructure and mechanical properties of the bulky sample before and after heat treatment were analyzed. Experimental results showed that the texture of the original samples parallel to the weld direction and perpendicular to the weld direction was similar consisting of columnar dendrites and equiaxed crystals. After T6 heat treatment, the hardness of the sample was increased to 115.85 HV from 62.83 HV, the yield strength of the sample was 273.33 MPa, the average tensile strength was 347.33 MPa, and the average elongation after fracture was 7.96%. Although pore defects existed in the fracture, yet the fracture of the sample was ductile fracture.


2020 ◽  
Vol 26 (10) ◽  
pp. 1739-1749
Author(s):  
Saad Waqar ◽  
Jiangwei Liu ◽  
Qidong Sun ◽  
Kai Guo ◽  
Jie Sun

Purpose This paper aims to investigate the influence of different post-annealing cooling conditions, i.e. furnace cooling (heat treatment (HT) 1 – slow cooling) and air cooling (HT 2 – fast cooling), on the microstructure and mechanical properties of selective laser melting (SLM) built austenitic 316L stainless steel (SS). Design/methodology/approach Three sets of 316L SS samples were fabricated using a machine standard scanning strategy. Each set consists of three tensile samples and a cubic sample for microstructural investigations. Two sets were subsequently subjected to annealing HT with different cooling conditions, i.e. HT 1 and HT 2, whereas one set was used in the as-built (AB) condition. The standard metallographic techniques of X-ray diffraction, scanning electron microscopy and electron back-scattered diffraction were used to investigate the microstructural variations induced by different cooling conditions. The resultant changes in mechanical properties were also investigated. Findings The phase change of SLM fabricated 316L was observed to be independent of the investigated cooling conditions and all samples consist of austenite phase only. Both HT 1 and HT 2 lead to dissolved characteristic melt pools of SLM. Noticeable increase in grain size of HT 1 and HT 2 samples was also observed. Compared with AB samples, the grain size of HT 1 and HT 2 was increased by 12.5% and 50%, respectively. A decreased hardness and strength, along with an increased ductility was also observed for HT 2 samples compared with HT 1 and AB samples. Originality/value From previous studies, it has been noticed that most investigations on HT of SLM fabricated 316L were mainly focused on the HT temperature or holding time. However, the post-HT cooling rate is also an equally important factor in deciding the microstructure and mechanical properties of heat-treated components. Therefore, this paper investigates the influence of different post-annealing cooling conditions on microstructure and mechanical properties of SLM fabricated 316L components. This study provides a foundation for considering the post-HT cooling rate as an influential parameter that controls the properties of heat-treated SLM components.


Sign in / Sign up

Export Citation Format

Share Document