Topology optimization of metamaterial microstructure for wireless power transfer with high power transmission efficiency

Author(s):  
Pengfei Shi ◽  
Yu Qin ◽  
Yangyang Cao ◽  
Hongge Zhao ◽  
Renjing Gao ◽  
...  
Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 448
Author(s):  
Sangyong Lee ◽  
Jeonho Lee ◽  
Jongkyum Kwon ◽  
Se-Kyo Chung

The improvement of power transmission efficiency (PTE) is an important issue in the design of a wireless power transfer (WPT) system. The WPT system with multiple transmitting (Tx) or receiving (Rx) coils is a way to improve the PTE. This paper deals with the estimation of the mutual inductance angle for a two-dimensional (2D) WPT system with two Tx coils and one Rx coil. The mutual inductance angle is one of the most important parameters to determine the PTE in the 2D WPT system. The condition for the maximum PTE is investigated and the mutual inductance angle is defined for the 2D WPT system. An improved estimation method of the mutual inductance angle is proposed based on the phase-locked loop (PLL) technique using the voltages and currents of the Tx coils. The simulation and experimental results are provided to validate the effectiveness of the proposed method.


2013 ◽  
Vol 437 ◽  
pp. 301-305 ◽  
Author(s):  
Yan Ting Luo ◽  
Yong Min Yang ◽  
Zhong Sheng Chen

Wireless power transfer (WPT) via coupled magnetic resonances has received much attention owing to its high power transmission efficiency at mid-range distance in recent years. In this paper, a novel network method is used to analyze the WPT system. A two-port network model of the system is built and the ABCD parameters of the model are innovatively used to characterize the system. Then the power transmission efficiency is analyzed at different transmission distance. To improve the power transmission efficiency, an impedance matching method is proposed based on the network analysis of the system. In the end, its feasibility is testified by a case study. The results demonstrate that the maximum power transmission efficiency can be achieved by using the impedance matching method proposed in this paper.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3803
Author(s):  
Chan-Mi Song ◽  
Hong-Jun Lim ◽  
Son Trinh-Van ◽  
Kang-Yoon Lee ◽  
Youngoo Yang ◽  
...  

In this paper, a dual-band RF wireless power transfer (WPT) system with a shared-aperture dual-band Tx array antenna for 2.4 and 5.8 GHz is proposed. The final configuration of the Tx array, which is made up of 2.4 GHz right-handed circular polarization (RHCP) patches and 5.8 GHz RHCP patches, is derived from the optimization of 2.4 and 5.8 GHz thinned arrays, ultimately to achieve high transmission efficiency for various WPT scenarios. The dual-band RF WPT Tx system including the Tx array antenna and a Tx module is implemented, and Rx antennas with a 2.4 GHz patch, a 5.8 GHz patch, and a dual-band (2.4 and 5.8 GHz) patch are developed. To validate the proposed dual-band RF WPT system, WPT experiments using a single band and dual bands were conducted. When transmitting RF wireless power on a single frequency (either 2.482 GHz or 5.73 GHz), the received power according to the distance between the Tx and Rx and the position of the Rx was measured. When the distance was varied from 1 m to 3.9 m and the transmitted power was 40 dBm, the received power value at 2.482 GHz and 5.73 GHz were measured and found to be 24.75–13.5 dBm (WPT efficiency = 2.985–0.224%) and 19.25–6.8 dBm (WPT efficiency = 0.841–0.050%), respectively. The measured results were in good agreement with the calculated results, and it is revealed that the transmission efficiency when wireless power is transmitted via beam-focusing increases more than that with conventional beam-forming. Furthermore, the dual-band WPT experiment proves that 2.482 GHz beam and 5.73 GHz beams can be formed individually and that their wireless power can be transmitted to a dual-band Rx or two different Rx.


2020 ◽  
Vol 30 (29) ◽  
pp. 2070191 ◽  
Author(s):  
Taiki Takamatsu ◽  
Yin Sijie ◽  
Fang Shujie ◽  
Liu Xiaohan ◽  
Takeo Miyake

Sign in / Sign up

Export Citation Format

Share Document