Droplets on an elastic membrane: Configurational energy balance and modified Young equation

2020 ◽  
Vol 138 ◽  
pp. 103902 ◽  
Author(s):  
Tianshu Liu ◽  
Zezhou Liu ◽  
Anand Jagota ◽  
Chung-Yuen Hui
Author(s):  
Chung-Yuen Hui ◽  
Anand Jagota

The equilibrium configuration of a liquid drop on a solid is determined by local energy balance. For a very stiff substrate, energy balance is represented by Young's equation. The equilibrium configuration near a line separating three fluids, in contrast, is determined by a balance of forces—their surface tensions—which is represented graphically by Neumann's triangle. We argue that these two are limiting cases of the more general situation of a drop on an elastic substrate in which both configurational energy balance and force balance must be satisfied independently. By analysing deformation close to the contact line of a liquid drop on an elastic substrate, we show that the transition from the surface tension-dominated regime to the elasticity-dominated regime is controlled by a dimensionless parameter: the ratio of an elasto-capillary length to the characteristic length scale over which surface tension acts. Because of the influence of substrate elasticity, the contact angle is not necessarily given by Young's equation. For compliant solids, we show that the local deformation and stress fields near the contact line are governed by surface tensions. However, if surface tension happens to be different from surface energy, configurational energy balance may not be consistent with force balance.


1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


Author(s):  
B Otto ◽  
H Rochlitz ◽  
M Möhlig ◽  
L Burget ◽  
J Kampe ◽  
...  
Keyword(s):  

2005 ◽  
Vol 43 (10) ◽  
Author(s):  
B Otto ◽  
F Lippl ◽  
P Pfluger ◽  
J Spranger ◽  
U Cuntz ◽  
...  
Keyword(s):  

2020 ◽  
Vol 2 (1) ◽  
pp. 19-24
Author(s):  
Sakhr Mohammed Sultan ◽  
Chih Ping Tso ◽  
Ervina Efzan Mohd Noor ◽  
Fadhel Mustafa Ibrahim ◽  
Saqaff Ahmed Alkaff

Photovoltaic Thermal Solar Collector (PVT) is a hybrid technology used to produce electricity and heat simultaneously. Current enhancements in PVT are to increase the electrical and thermal efficiencies. Many PVT factors such as type of absorber, thermal conductivity, type of PV module and operating conditions are important parameters that can control the PVT performance. In this paper, an analytical model, using energy balance equations, is studied for PVT with an improved parallel flow absorber. The performance is calculated for a typical sunny weather in Malaysia. It was found that the maximum electrical and thermal efficiencies are 12.9 % and 62.6 %, respectively. The maximum outlet water temperature is 59 oC.


2019 ◽  
Vol 139 (5) ◽  
pp. 302-308 ◽  
Author(s):  
Shinji Yamamoto ◽  
Soshi Iwata ◽  
Toru Iwao ◽  
Yoshiyasu Ehara

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1163-P ◽  
Author(s):  
SURYA PANICKER RAJEEV ◽  
CARL A. ROBERTS ◽  
DANIEL J. CUTHBERTSON ◽  
VICTORIA S. SPRUNG ◽  
EMILY BROWN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document