The role of grain boundary mobility in diffusional deformation

Author(s):  
Francis Delannay
2010 ◽  
Vol 653 ◽  
pp. 87-130 ◽  
Author(s):  
Ankur Gupta ◽  
Samir Sharma ◽  
Milind R. Joshi ◽  
Parnika Agarwal ◽  
Kantesh Balani

Emergence of engineering nanomaterials to render exceptional properties require understanding the thermodynamics and kinetics of grain growth and eliciting role of grain boundary mobility therein. Grain boundary mobility in alumina (Al2O3) has shown several repercussions on the evolution of microstructure to render drastic differences in the mechanical- (hardness, yield strength), optical- (transmittance), electrical- (conductivity), magnetic- (susceptibility), and electrochemical- (corrosion) properties. Consequently, the role of surface energy and the effect of temperature in equilibrating the grain shape and size are presented herewith. Several statistical or deterministic computational modeling have been attempted by researchers to elicit the dominating grain growth mechanisms. But, the limitations extend from the memory of computer and number of atoms in a simulation, or feeding the boundary conditions without incorporation of the initial microstructure to arrive at the dominating growth mechanism parameters. Contrastingly, the role of dopants in Al2O3 to either enhance or impede the grain growth is presented via various complexions responsible for transitions at the grain boundary interface. Six complexions resulting various grain boundary interface, strongly affect the grain boundary mobility, and sideline the dopant contributions in deciding the overall grain boundary mobility. It has also been presented that grain growth exponent increases with decreasing grain size, and additionally, secondary reinforcement of carbon nanotube (CNT) in Al2O3 impedes the grain mobility by as much as four times. The effect of temperature is found to be more pronounced, and has shown to enhance the grain boundary mobility by as much as six orders of magnitude.


2007 ◽  
Vol 558-559 ◽  
pp. 383-387 ◽  
Author(s):  
Hasso Weiland ◽  
Soon Wuk Cheong

Control of grain size during recrystallization of aluminum alloys is critical when tailoring material properties for structural applications. Most commonly the grain size is controlled by adding alloying elements which form second phases during homogenization heat treatments small enough to impose a Zener drag on the grain boundary mobility. These phases are known as dispersoids and are in the 10 to 200 nm in diameter range. In Al-Zn alloys, zirconium has been successfully used in controlling the degree of recrystallization after solution heat treatments. It is commonly understood that the Al3Zr dispersoids of about 20 nm in diameter present in the microstructure are the key features affecting grain boundary mobility. With the success of controlling recrystallization in Al- Zn alloys, zirconium has been added to other alloy systems, such as Al-Cu-Mn, and a similar retarding effect in recrystallization kinetics has been observed as seen in the Al-Zn systems. However, in Al-Cu-Mn alloys, zirconium bearing dispersoids are not observable in the microstructure. Consequently, additional microstructural effects such as solute drag need to be considered to explain the experimental observations. In this paper, the role of zirconium additions in aluminum alloys will be summarized.


Author(s):  
Blas P. Uberuaga ◽  
Pauline Simonnin ◽  
Kevin M. Rosso ◽  
Daniel K. Schreiber ◽  
Mark Asta

AbstractMass transport along grain boundaries in alloys depends not only on the atomic structure of the boundary, but also its chemical make-up. In this work, we use molecular dynamics to examine the effect of Cr alloying on interstitial and vacancy-mediated transport at a variety of grain boundaries in Ni. We find that, in general, Cr tends to reduce the rate of mass transport, an effect which is greatest for interstitials at pure tilt boundaries. However, there are special scenarios in which it can greatly enhance atomic mobility. Cr tends to migrate faster than Ni, though again this depends on the structure of the grain boundary. Further, grain boundary mobility, which is sometimes pronounced for pure Ni grain boundaries, is eliminated on the time scales of our simulations when Cr is present. We conclude that the enhanced transport and grain boundary mobility often seen in this system in experimental studies is the result of non-equilibrium effects and is not intrinsic to the alloyed grain boundary. These results provide new insight into the role of grain boundary alloying on transport that can help in the interpretation of experimental results and the development of predictive models of materials evolution.


2005 ◽  
Vol 495-497 ◽  
pp. 1231-1236
Author(s):  
Vera G. Sursaeva

Texture formation during secondary recrystallization depends on the nature of secondary recrystallization process itself. So microstructure evolution and texture development during secondary recrystallization should be discussed concurrently. The main goal of the paper is studying of the effect of internal stresses on grain boundary motion or, more generally, the interaction of grain boundaries with stress fields and the effect of deformation inhomogeniety on grain boundary mobility during secondary recrystallization. Considering transformation from normal grain growth to secondary recrystallization, the attempt was made to characterize the microstructure and to relate it to the processes of nucleation and growth of new rains. The nucleation process is heterogeneous. The data allow us to assume that the nuclei are strain free grains.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 370
Author(s):  
Chih-Ting Lai ◽  
Hsuan-Hao Lai ◽  
Yen-Hao Su ◽  
Fei-Ya Huang ◽  
Chi-Kang Lin ◽  
...  

In this study, the effects of the addition of Mg to the grain growth of austenite and the magnesium-based inclusions to mobility were investigated in SS400 steel at high temperatures. A high-temperature confocal scanning laser microscope (HT-CSLM) was employed to directly observe, in situ, the grain structure of austenite under 25 torr Ar at high temperatures. The grain size distribution of austenite showed the log-normal distribution. The results of the grain growth curves using 3D surface fitting showed that the n and Q values of the growth equation parameters ranged from 0.2 to 0.26 and from 405 kJ/mole to 752 kJ/mole, respectively, when adding 5.6–22 ppm of Mg. Increasing the temperature from 1150 to 1250 °C for 20 min and increasing the addition of Mg by 5.6, 11, and 22 ppm resulted in increases in the grain boundary velocity. The effects of solute drag and Zener pinning on grain boundary mobility were also calculated in this study.


1961 ◽  
Vol 9 (10) ◽  
pp. 960-961 ◽  
Author(s):  
M.J. Fraser ◽  
R.E. Gold ◽  
W.W. Mullins

Sign in / Sign up

Export Citation Format

Share Document