scholarly journals Grain refinement and improvement of mechanical properties of AZ31 magnesium alloy inoculated by in-situ oxidation process

2021 ◽  
Vol 12 ◽  
pp. 807-817
Author(s):  
Hengbin Liao ◽  
Liling Mo ◽  
Xiong Zhou ◽  
Bing Zhao ◽  
Jun Du
Author(s):  
Wenxue Fan ◽  
Hai Hao

Abstract Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.


2012 ◽  
Vol 57 (3) ◽  
pp. 711-717 ◽  
Author(s):  
K. Bryła ◽  
J. Dutkiewicz ◽  
L. Litynska-Dobrzynska ◽  
L.L. Rokhlin ◽  
P. Kurtyka

The aim of this work was to investigate the influence of the number of equal channel angular pressing (ECAP) passes on the microstructure and mechanical properties of AZ31 magnesium alloy. The microstructure after two and four passes of ECAP at 423 and 523 K was investigated by means of optical and transmission electron microscopy. The mechanical properties were carried out using Vickers microhardness measurements and compression test. The grain refinement in AZ31 alloy was obtained using ECAP routes down to 1,5 μm at 423 K. Processes of dynamic recrystallization during ECAP were observed. It was found that a gradual decrease of grain size occurs with the increasing of number of ECAP passes. The grain refinement increases mechanical properties at ambient temperature, such as Vickers microhardness and compression strength proportionally to d-0.5.


2019 ◽  
Vol 781 ◽  
pp. 1150-1158 ◽  
Author(s):  
Wei Qiu ◽  
Zhiqiang Liu ◽  
Rongzong Yu ◽  
Jian Chen ◽  
Yanjie Ren ◽  
...  

2003 ◽  
Vol 9 (5) ◽  
pp. 453-458 ◽  
Author(s):  
Qinglin Jin ◽  
Jeong-Pil Eom ◽  
Su-Gun Lim ◽  
Won-Wook Park ◽  
Bong-Sun You

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 884 ◽  
Author(s):  
Yunping Ji ◽  
Ming-Xing Zhang ◽  
Huiping Ren

Refinement of as-cast structures is one of the most effective approaches to improve mechanical properties, formability, and surface quality of steel castings and ingots. In the past few decades, addition of rare earths (REs), lanthanum and cerium in particular, has been considered as a practical and effective method to refine the as-cast steels. However, previous reports contained inconsistent, sometime even contradictory, results. This review summaries the major published results on investigation of the roles of lanthanum or/and cerium in various steels, provides reviews on the similarity and difference of previous studies, and clarifies the inconsistent results. The proposed mechanisms of grain refinement by the addition of lanthanum or/and cerium are also reviewed. It is concluded that the grain refinement of steels by RE additions is attributed to either heterogeneous nucleation on the in-situ formed RE inclusions, a solute effect, or the combined effect of both. The models/theories for evaluation of heterogeneous nucleation potency and for solute effect on grain refinement of cast metals are also briefly summarized.


2008 ◽  
Vol 461 (1-2) ◽  
pp. 298-303 ◽  
Author(s):  
Mingbo Yang ◽  
Fusheng Pan ◽  
Renju Cheng ◽  
Aitao Tang

Sign in / Sign up

Export Citation Format

Share Document