scholarly journals Unusual two-step dealloying mechanism of nanoporous TiVNbMoTa high-entropy alloy during liquid metal dealloying

Author(s):  
Soo-Hyun Joo ◽  
I.V. Okulov ◽  
H. Kato
Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 364
Author(s):  
Hao Wang ◽  
Jun Xiao ◽  
Hui Wang ◽  
Yong Chen ◽  
Xing Yin ◽  
...  

Liquid metal fast reactors were considered to be the most promising solution to meet the enormous energy demand in the future. However, corrosion phenomenon caused by the liquid metal, especially in high-temperature lead-bismuth coolant, has greatly hindered the commercialization of the advanced Generation-IV nuclear system. This review discussed current research on the corrosion resistance of structural materials (such as EP823, T91, ODS, and authentic steels) in high-temperature liquid metal served as reactor coolants. The current corrosion resistance evaluation has proved that even for the excellent performance of EP823, the structural material selected in pressurized water reactor is not the ideal material for operation in the high-temperature lead-bismuth eutectic (LBE). Furthermore, the latest coating technologies that are expected to be applied to cladding materials for coolant system were extensively discussed, including Al-containing coatings, ceramic coatings, oxide coatings, amorphous coatings and high-entropy alloy coatings. The detailed comparison summarized the corrosion morphology and corrosion products of various coatings in LBE. This review not only provided a systematic understanding of the corrosion phenomena, but also demonstrated that coating technology is an effective method to solve the corrosion issues of the advanced next-generation reactors.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1396 ◽  
Author(s):  
Artem Vladimirovich Okulov ◽  
Soo-Hyun Joo ◽  
Hyoung Seop Kim ◽  
Hidemi Kato ◽  
Ilya Vladimirovich Okulov

High-entropy nanomaterials possessing high accessible surface areas have demonstrated outstanding catalytic performance, beating that found for noble metals. In this communication, we report about the synthesis of a new, nanoporous, high-entropy alloy (HEA) possessing open porosity. The nanoporous, high-entropy Ta19.1Mo20.5Nb22.9V30Ni7.5 alloy (at%) was fabricated from a precursor (TaMoNbV)25Ni75 alloy (at%) by liquid metal dealloying using liquid magnesium (Mg). Directly after dealloying, the bicontinuous nanocomposite consisting of a Mg-rich phase and a phase with a bulk-centered cubic (bcc) structure was formed. The Mg-rich phase was removed with a 3M aqueous solution of nitric acid to obtain the open, porous, high-entropy Ta19.1Mo20.5Nb22.9V30Ni7.5 alloy (at%). The ligament size of this nanoporous HEA is about 69 ± 9 nm, indicating the high surface area in this material.


2021 ◽  
Vol 194 ◽  
pp. 113652
Author(s):  
Xing Gong ◽  
Congying Xiang ◽  
Thierry Auger ◽  
Jiajun Chen ◽  
Xiaocong Liang ◽  
...  

2019 ◽  
Author(s):  
Nirmal Kumar ◽  
Subramanian Nellaiappan ◽  
Ritesh Kumar ◽  
Kirtiman Deo Malviya ◽  
K. G. Pradeep ◽  
...  

<div>Renewable harvesting clean and hydrogen energy using the benefits of novel multicatalytic materials of high entropy alloy (HEA equimolar Cu-Ag-Au-Pt-Pd) from formic acid with minimum energy input has been achieved in the present investigation. The synthesis effect of pristine elements in the HEA drives the electro-oxidation reaction towards non-carbonaceous pathway . The atomistic simulation based on DFT rationalize the distinct lowering of the d-band center for the individual atoms in the HEA as compared to the pristine counterparts. This catalytic activity of the HEA has also been extended to methanol electro-oxidation to show the unique capability of the novel catalyst. The nanostructured HEA, properties using a combination of casting and cry omilling techniques can further be utilized as fuel cell anode in direct formic acid/methanol fuel cells (DFFE).<br></div>


Author(s):  
Janez Dolinšek ◽  
Stanislav Vrtnik ◽  
J. Lužnik ◽  
P. Koželj ◽  
M. Feuerbacher

2006 ◽  
Vol 31 (6) ◽  
pp. 723-736 ◽  
Author(s):  
Keng-Hao Cheng ◽  
Chia-Han Lai ◽  
Su-Jien Lin ◽  
Jien-Wei Yeh

Sign in / Sign up

Export Citation Format

Share Document