TiO 2 -based photocatalysts prepared by oxidation of TiN nanoparticles and their photocatalytic activities under visible light illumination

2018 ◽  
Vol 34 (6) ◽  
pp. 969-975 ◽  
Author(s):  
Chao Li ◽  
Weiyi Yang ◽  
Qi Li
2018 ◽  
Vol 5 (8) ◽  
pp. 180752 ◽  
Author(s):  
Heshan Cai ◽  
Linmei Cheng ◽  
Feng Xu ◽  
Hailong Wang ◽  
Weicheng Xu ◽  
...  

A heterojunction catalyst, BiVO 4 /P25, was successfully fabricated using a one-step hydrothermal method. The prepared composite was characterized using XRD, XPS, Raman, FT-IR, UV–vis, SEM, HRTEM and PL. The HRTEM pictures revealed that the heterostructured composite was composed of BiVO 4 and P25, and from the pictures of SEM we could see the P25 nanoparticles assembling on the surface of flower-shaped BiVO 4 nanostructures. The XPS spectra showed that the prepared catalyst consisted of Bi, V, O, Ti and C. The photocatalytic activity of BiVO 4 /P25 was evaluated by degraded methyl blue (MB) and tetracycline under visible light illumination ( λ > 420 nm), and the results showed that BiVO 4 /P25 composite has a better photocatalytic performance compared with pure BiVO 4 and the most active c-BiVO 4 /P25 sample showed enough catalytic stability after three successive reuses for MB photodegradation. The enhanced photocatalytic performance could mainly be attributed to the better optical absorption ability and good absorption ability of organic contaminants.


2021 ◽  
Vol 947 (1) ◽  
pp. 012016
Author(s):  
Thi-Ngoc-Suong Ho ◽  
Manh-Thang Ngo ◽  
Minh-Vien Le

Abstract Ag-doped TiO2/SiO2 with visible light response was prepared by a simple sol-gel method using titanium w-butoxide (TNB), tetraethoxysilane (TEOS) as precursors, and silver nitrate (AgNO3). The synthesized Ag-TiO2/SiO2 were characterized by SEM, XRD, PL (photoluminescence) emission and UV-Vis absorption spectroscopy. Their photocatalytic activities were evaluated by treating aqueous solutions of phenol under simulated visible light illumination. The role of silver doped was investigated in the range 1% – 5% (molar ratio), resulting in the best bandgap value of 2.93 eV for Ag(3%)-TiO2/SiO2 compared to 3,18 eV for the un-doped TiO2/SiO2. Consequently, the best phenol treating yield – about 97% after 4 hours – was obtained using Ag(3%)-TiO2/SiO2. So the synthesized Ag(3%)-TiO2/SiO2 might serve as a potential photocatalyst for water treatment using visible lights.


2015 ◽  
Vol 19 (6) ◽  
pp. 512-520 ◽  
Author(s):  
Nikolaos Karanasios ◽  
Jenia Georgieva ◽  
Eugenia Valova ◽  
Stephan Armyanov ◽  
Georgios Litsardakis ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Lingfang Qiu ◽  
Zhiwei Zhou ◽  
Mengfan Ma ◽  
Ping Li ◽  
Jinyong Lu ◽  
...  

Novel visible-light responded aluminosilicophosphate-5 (SAPO-5)/g-C3N4 composite has been easily constructed by thermal polymerization for the mixture of SAPO-5, NH4Cl, and dicyandiamide. The photocatalytic activity of SAPO-5/g-C3N4 is evaluated by degrading RhB (30 mg/L) under visible light illumination (λ > 420 nm). The effects of SAPO-5 incorporation proportion and initial RhB concentration on the photocatalytic performance have been discussed in detail. The optimized SAPO-5/g-C3N4 composite shows promising degradation efficiency which is 40.6% higher than that of pure g-C3N4. The degradation rate improves from 0.007 min−1 to 0.022 min−1, which is a comparable photocatalytic performance compared with other g-C3N4-based heterojunctions for dye degradation. The migration of photo-induced electrons from g-C3N4 to the Al site of SAPO-5 should promote the photo-induced electron-hole pairs separation rate of g-C3N4 efficiently. Furthermore, the redox reactions for RhB degradation occur on the photo-induced holes in the g-C3N4 and Al sites in SAPO-5, respectively. This achievement not only improves the photocatalytic activity of g-C3N4 efficiently, but also broadens the application of SAPOs in the photocatalytic field.


Applied Nano ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 148-161
Author(s):  
Katerina Govatsi ◽  
Aspasia Antonelou ◽  
Labrini Sygellou ◽  
Stylianos G. Neophytides ◽  
Spyros N. Yannopoulos

The rational synthesis of semiconducting materials with enhanced photoelectrocatalytic efficiency under visible light illumination is a long-standing issue. ZnO has been systematically explored in this field, as it offers the feasibility to grow a wide range of nanocrystal morphology; however, its wide band gap precludes visible light absorption. We report on a novel method for the controlled growth of semiconductor heterostructures and, in particular, core/sheath ZnO/MoS2 nanowire arrays and the evaluation of their photoelectrochemical efficiency in oxygen evolution reaction. ZnO nanowire arrays, with a narrow distribution of nanowire diameters, were grown on FTO substrates by chemical bath deposition. Layers of Mo metal at various thicknesses were sputtered on the nanowire surface, and the Mo layers were sulfurized at low temperature, providing in a controlled way few layers of MoS2, in the range from one to three monolayers. The heterostructures were characterized by electron microscopy (SEM, TEM) and spectroscopy (XPS, Raman, PL). The photoelectrochemical properties of the heterostructures were found to depend on the thickness of the pre-deposited Mo film, exhibiting maximum efficiency for moderate values of Mo film thickness. Long-term stability, in relation to similar heterostructures in the literature, has been observed.


Sign in / Sign up

Export Citation Format

Share Document