Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding

2021 ◽  
Vol 84 ◽  
pp. 230-238
Author(s):  
Zijian Zhang ◽  
En-Hou Han ◽  
Chao Xiang
2021 ◽  
Vol 199 ◽  
pp. 113886
Author(s):  
Xicong Ye ◽  
Jinyan Xiong ◽  
Xin Wu ◽  
Chang Liu ◽  
Dong Xu ◽  
...  

Author(s):  
Vinay Kumar Soni ◽  
S Sanyal ◽  
K Raja Rao ◽  
Sudip K Sinha

The formation of single phase solid solution in High Entropy Alloys (HEAs) is essential for the properties of the alloys therefore, numerous approach were proposed by many researchers to predict the stability of single phase solid solution in High Entropy Alloy. The present review examines some of the recent developments while using computational intelligence techniques such as parametric approach, CALPHAD, Machine Learning etc. for prediction of various phase formation in multicomponent high entropy alloys. A detail study of this data-driven approaches pertaining to the understanding of structural and phase formation behaviour of a new class of compositionally complex alloys is done in the present investigation. The advantages and drawbacks of the various computational are also discussed. Finally, this review aims at understanding several computational modeling tools complying the thermodynamic criteria for phase formation of novel HEAs which could possibly deliver superior mechanical properties keeping an aim at advanced engineering applications.


2018 ◽  
Vol 941 ◽  
pp. 1137-1142
Author(s):  
Elena Colombini ◽  
Andrea Garzoni ◽  
Roberto Giovanardi ◽  
Paolo Veronesi ◽  
Angelo Casagrande

The equimolar Cr, Mn, Fe, Co and Ni alloy, first produced in 2004, was unexpectedly found to be single-phase. Consequently, a new concept of materials was developed: high entropy alloys (HEA) forming a single solid-solution with a near equiatomic composition of the constituting elements. In this study, an equimolar CoCrFeMnNi HEA was modified by the addition of 5 at% of either Al, Cu or Zr. The cold-rolled alloys were annealed for 30 minutes at high temperature to investigate the recrystallization kinetics. The evolution of the grain boundary and the grain size were investigated, from the as-cast to the recrystallized state. Results show that the recrystallized single phase FCC structures exhibits different twin grains density, grain size and recrystallization temperatures as a function of the at.% of modifier alloying elements added. In comparison to the equimolar CoCrFeMnNi, the addition of modifier elements increases significantly the recrystallization temperature after cold deformation. The sluggish diffusion (typical of HEA alloys), the presence of a solute in solid solution as well as the low twin boundary energy are responsible for the lower driving force for recrystallization.


2018 ◽  
Vol 183 ◽  
pp. 03028 ◽  
Author(s):  
Marc A. Meyers ◽  
Zezhou Li ◽  
Shiteng Zhao ◽  
Bingfeng Wang ◽  
Yong Liu ◽  
...  

Dynamic behavior of the single phase (fcc) Al0.3CoCrFeNi and CoCrFeMnNi high-entropy alloys (HEAs) was examined. The combination of multiple strengthening mechanisms such as solid solution hardening, cutting forest dislocation, as well as mechanical nano-twinning leads to a high work-hardening rate, compared with conventional alloys. The resistance to shear localization was studied by dynamicallyloading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed for Al0.3CoCrFeNi HEA at a large shear strain ~1.1. Additionally, shear localization of the CoCrFeMnNi HEA was only found at an even larger shear strain ~7 under dynamic compression. It is therefore proposed that the combination of the excellent strain-hardening ability and modest thermal softening of these two kinds of high-entropy alloys gives rise to remarkable resistance to shear localization, which makes HEAs excellent candidates for impact resistance applications.


2018 ◽  
Vol 24 (S1) ◽  
pp. 2214-2215
Author(s):  
Bharat Gwalani ◽  
Riyadh Salloom ◽  
Talukder Alam ◽  
Sheena V. Grace ◽  
Srivilliputhur Srinivasan ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
M. Claudia Troparevsky ◽  
James R. Morris ◽  
Paul R. C. Kent ◽  
Andrew R. Lupini ◽  
G. Malcolm Stocks

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1020 ◽  
Author(s):  
Bhupendra Sharma ◽  
Kentaro Nagano ◽  
Kuldeep Kumar Saxena ◽  
Hiroshi Fujiwara ◽  
Kei Ameyama

For the first time, an equiatomic refractory high entropy alloy (RHEA) TiNbZrHfTa compact with a single-phase body-centered cubic (BCC) structure was fabricated via a titanium hydride (TiH2) assisted powder metallurgy approach. The constituent pure Ti, Zr, Nb, Hf, and Ta powders were mechanically alloyed (MA) with titanium hydride (TiH2) powder. The resultant MA powder was dehydrogenated at 1073 K for 3.6 ks and subsequently sintered through spark plasma sintering (SPS). Additionally, TiNbZrHfTa counterparts were prepared from pure elements without MA with TiH2. It was observed that the compact prepared from pure powders had a chemically heterogeneous microstructure with hexagonal close packed (HCP) and dual BCC phases. On the other hand, despite containing many constituents, the compact fabricated at 1473 K for 3.6 ks via the hydride approach had a single-phase BCC structure. The Vickers microhardness of the TiNbZrHfTa alloy prepared via the hydride process was Hv 520 (±30). The exceptional microhardness of the alloy is greater than any individual constituent, suggesting the operation of a simple solid-solution-like strengthening mechanism and/or precipitation hardening. In addition, the heat treatments were also carried out to analyze the phase stability of TiNbZrHfTa prepared via the hydride process. The results highlight the substantial changes in the phase as a function of temperature and/or time.


Sign in / Sign up

Export Citation Format

Share Document