A new infinite solid solution strategy to design eutectic high entropy alloys with B2 and BCC structure

2021 ◽  
Vol 199 ◽  
pp. 113886
Author(s):  
Xicong Ye ◽  
Jinyan Xiong ◽  
Xin Wu ◽  
Chang Liu ◽  
Dong Xu ◽  
...  
2013 ◽  
Vol 765-767 ◽  
pp. 3143-3146
Author(s):  
Yan Ping Wang ◽  
Yu Zhuang ◽  
Jian Chen Li

Four high-entropy alloys are prepared by an arc furnace under argon atmosphere. The microstructure and the properties of the alloys are investigated. The results show that NiCrCuCoFe alloy consists of a single FCC solid solution. When Al presents in the alloys, the microstructures of the alloys change to a BCC+ FCC solid solution. It is indicated that Al element promotes the formation of BCC solid solution, and Si and Mn promote the formation of complicated compounds. The hardness of alloys with BCC structure is higher than that of the alloys with FCC structure. The complicated compounds are formed, the hardness increases further. The highest hardness of the alloys reaches 882 HV due to the strengthening of the second phase precipitation.


2021 ◽  
pp. 110877
Author(s):  
Ankit Roy ◽  
Praveen Sreeramagiri ◽  
Tomas Babuska ◽  
Brandon Krick ◽  
Pratik K. Ray ◽  
...  

2021 ◽  
Vol 197 ◽  
pp. 110623
Author(s):  
Ujjawal Kumar Jaiswal ◽  
Yegi Vamsi Krishna ◽  
M.R. Rahul ◽  
Gandham Phanikumar

Author(s):  
Vinay Kumar Soni ◽  
S Sanyal ◽  
K Raja Rao ◽  
Sudip K Sinha

The formation of single phase solid solution in High Entropy Alloys (HEAs) is essential for the properties of the alloys therefore, numerous approach were proposed by many researchers to predict the stability of single phase solid solution in High Entropy Alloy. The present review examines some of the recent developments while using computational intelligence techniques such as parametric approach, CALPHAD, Machine Learning etc. for prediction of various phase formation in multicomponent high entropy alloys. A detail study of this data-driven approaches pertaining to the understanding of structural and phase formation behaviour of a new class of compositionally complex alloys is done in the present investigation. The advantages and drawbacks of the various computational are also discussed. Finally, this review aims at understanding several computational modeling tools complying the thermodynamic criteria for phase formation of novel HEAs which could possibly deliver superior mechanical properties keeping an aim at advanced engineering applications.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 989
Author(s):  
Panos Tsakiropoulos

The paper reflects on the usefulness of the alloy design methodology NICE (Niobium Intermetallic Composite Elaboration) for the development of new Nb-containing metallic ultra-high-temperature materials (UHTMs), namely refractory metal (Nb) intermetallic composites (RM(Nb)ICs), refractory high entropy alloys (RHEAs) and refractory complex concentrated alloys (RCCAs), in which the same phases can be present, specifically bcc solid solution(s), M5Si3 silicide(s) and Laves phases. The reasons why a new alloy design methodology was sought and the foundations on which NICE was built are discussed. It is shown that the alloying behavior of RM(Nb)ICs, RHEAs and RCCAs can be described by the same parameters. The practicality of parameter maps inspired by NICE for describing/understanding the alloying behavior and properties of alloys and their phases is demonstrated. It is described how NICE helps the alloy developer to understand better the alloys s/he develops and what s/he can do and predict (calculate) with NICE. The paper expands on RM(Nb)ICs, RHEAs and RCCAs with B, Ge or Sn, the addition of which and the presence of A15 compounds is recommended in RHEAs and RCCAs to achieve a balance of properties.


2018 ◽  
Vol 941 ◽  
pp. 1137-1142
Author(s):  
Elena Colombini ◽  
Andrea Garzoni ◽  
Roberto Giovanardi ◽  
Paolo Veronesi ◽  
Angelo Casagrande

The equimolar Cr, Mn, Fe, Co and Ni alloy, first produced in 2004, was unexpectedly found to be single-phase. Consequently, a new concept of materials was developed: high entropy alloys (HEA) forming a single solid-solution with a near equiatomic composition of the constituting elements. In this study, an equimolar CoCrFeMnNi HEA was modified by the addition of 5 at% of either Al, Cu or Zr. The cold-rolled alloys were annealed for 30 minutes at high temperature to investigate the recrystallization kinetics. The evolution of the grain boundary and the grain size were investigated, from the as-cast to the recrystallized state. Results show that the recrystallized single phase FCC structures exhibits different twin grains density, grain size and recrystallization temperatures as a function of the at.% of modifier alloying elements added. In comparison to the equimolar CoCrFeMnNi, the addition of modifier elements increases significantly the recrystallization temperature after cold deformation. The sluggish diffusion (typical of HEA alloys), the presence of a solute in solid solution as well as the low twin boundary energy are responsible for the lower driving force for recrystallization.


2021 ◽  
Vol 1016 ◽  
pp. 1386-1391
Author(s):  
Anastasia Semenyuk ◽  
Margarita Klimova ◽  
Sergey Zherebtsov ◽  
Nikita Stepanov

High entropy alloys (HEAs) with face-centered cubic (fcc) structure, namely equiatomic CoCrFeMnNi alloy, have attracted considerable attention because of impressive cryogenic mechanical properties – strength, ductility, and fracture toughness. Further increase of the properties can be achieved, for example, by proper alloying. A particularly attractive option is the addition of interstitial elements like carbon or nitrogen. In present work, a series of CoCrFeMnNi-based alloys with different amounts of C and N (0-2 at.%) was prepared by induction melting. The alloys doped with C had lower Cr content to increase the solubility of carbon in the fcc solid solution. It was revealed that the solid solution strengthening effect of both C and N is significantly increased when the testing temperature decreases from 293K to 77K. The effect of thermomechanical processing on the structure and mechanical properties of the alloys is analyzed.


2019 ◽  
Vol 759 ◽  
pp. 633-639 ◽  
Author(s):  
Maya Putri Agustianingrum ◽  
Ibrahim Ondicho ◽  
Dennis Edgard Jodi ◽  
Nokeun Park ◽  
Unhae Lee

Sign in / Sign up

Export Citation Format

Share Document