tih2 powder
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 873 ◽  
pp. 159792
Author(s):  
T. Chen ◽  
C. Yang ◽  
Z. Liu ◽  
H.W. Ma ◽  
L.M. Kang ◽  
...  


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shucheng Dong ◽  
Baicheng Wang ◽  
Yuchao Song ◽  
Guangyu Ma ◽  
Huiyan Xu ◽  
...  

The compaction mechanism of titanium hydride powder is an important issue because it has a direct impact on density and strength of green compacts and ultimately on the physical and mechanical properties of a final sintered products. In this paper, the characteristics and compaction behavior of titanium hydride and hydrogenation-dehydrogenation titanium powders are comparatively studied and analyzed for better understanding of compaction mechanism of brittle low-strength titanium hydride. The results indicate that the particles of titanium hydride powder are easily crushed under compaction loading at relatively low pressure well below compression strength of bulk titanium hydride, the degree of particle crushed increases with the increase of pressure. The compaction behavior of titanium hydride powder mainly includes the rearrangement and crushing of particles in the early compaction stage, minor plastic deformation, if any, and further rearrangement of particle fragments with filling the pores in the later stage. Such compaction behavior provides relative density of green hydride compacts higher than that for titanium powder of the same size. The relatively coarse titanium hydride powder with wide particle size distribution is easier to fill the pores providing highest green density.



Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 635
Author(s):  
Mengjie Yan ◽  
Fang Yang ◽  
Boxin Lu ◽  
Cunguang Chen ◽  
Yanli Sui ◽  
...  

Preparing high relative density γ-TiAl alloy by pressure-less sintering at low-cost has always been a challenge. Therefore, a new kind of non-spherical pre-alloyed TiAl powder was prepared by the reaction of TiH2 powder and Al powder at 800 °C to fabricate high-density Ti-48Al alloy via pressure-less sintering. The oxygen content was controlled to below 1800 ppm by using coarse Al powder (~120 μm). The sintered densities ranged from 92.1% to 97.5% with sintering temperature varying from 1300 °C to 1450 °C. The microstructure of the sintered compact was greatly influenced by the sintering temperature. The as-sintered samples had a near-γ structure at 1350 °C, a duplex structure at 1400 °C, and a nearly lamellar structure at 1450 °C. To achieve full densification, non-capsule hot isostatic pressing was performed on the 1350 °C and 1400 °C sintered samples. As a result, high compressive strengths of 2241 MPa and 1931MPa were obtained, which were higher than the existing Ti-48Al alloys.



2021 ◽  
Vol 8 (2) ◽  
pp. 026510
Author(s):  
Bing Zhang ◽  
Shaopeng Liu ◽  
Jing Xia ◽  
Yungui Chen ◽  
Yongbai Tang


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1020 ◽  
Author(s):  
Bhupendra Sharma ◽  
Kentaro Nagano ◽  
Kuldeep Kumar Saxena ◽  
Hiroshi Fujiwara ◽  
Kei Ameyama

For the first time, an equiatomic refractory high entropy alloy (RHEA) TiNbZrHfTa compact with a single-phase body-centered cubic (BCC) structure was fabricated via a titanium hydride (TiH2) assisted powder metallurgy approach. The constituent pure Ti, Zr, Nb, Hf, and Ta powders were mechanically alloyed (MA) with titanium hydride (TiH2) powder. The resultant MA powder was dehydrogenated at 1073 K for 3.6 ks and subsequently sintered through spark plasma sintering (SPS). Additionally, TiNbZrHfTa counterparts were prepared from pure elements without MA with TiH2. It was observed that the compact prepared from pure powders had a chemically heterogeneous microstructure with hexagonal close packed (HCP) and dual BCC phases. On the other hand, despite containing many constituents, the compact fabricated at 1473 K for 3.6 ks via the hydride approach had a single-phase BCC structure. The Vickers microhardness of the TiNbZrHfTa alloy prepared via the hydride process was Hv 520 (±30). The exceptional microhardness of the alloy is greater than any individual constituent, suggesting the operation of a simple solid-solution-like strengthening mechanism and/or precipitation hardening. In addition, the heat treatments were also carried out to analyze the phase stability of TiNbZrHfTa prepared via the hydride process. The results highlight the substantial changes in the phase as a function of temperature and/or time.



Author(s):  
Mohammad Rezaei Ardani ◽  
Sheikh Abdul Rezan Sheikh Abdul Hamid ◽  
Hooi Ling Lee ◽  
Abdul Rahman Mohamed ◽  
Ismail Ibrahim


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1154 ◽  
Author(s):  
Park ◽  
Choi ◽  
Na ◽  
Kang ◽  
Park ◽  
...  

In this study, oxygen reduction behavior of TiH2 powders during dehydrogenation process was investigated based on thermodynamics. During the hydrogenation–dehydrogenation (HDH) method to fabricate Ti powder, TiH2 was formed from a Ti sponge through hydrogenation annealing, and was easily pulverized even by ball milling due to its brittle nature. The ball milling process caused an increase in the oxygen concentration from 0.133 to 0.282 wt %, and transmission electron microscopy and X-ray photoelectron Spectroscopy results demonstrated that the formation of oxide layers such as TiO and TiO2 formed on the surface of the TiH2 powder resulted in the higher oxygen content. Dehydrogenation, which is the process originally conducted to eliminate hydrogen from TiH2, was used to remove and/or reduce oxygen, resulting in the reduction of the oxygen concentration from 0.282 to 0.216 wt %. Thermodynamic calculations confirmed the possibility of oxygen reduction by atomic hydrogen but molecular hydrogen has no function for the oxygen reduction. Glow discharge mass spectrometry (GD-MS) analysis, which checks H2O flow as an evidence of the oxygen reduction by hydrogen, supported the fact that the atomic hydrogen formed during the dehydrogenation process is able to play a critical role in decreasing the oxygen content.



2018 ◽  
Vol 44 (14) ◽  
pp. 16947-16952 ◽  
Author(s):  
Miao Song ◽  
Maoqiao Xiang ◽  
Yafeng Yang ◽  
Qingshan Zhu ◽  
Chaoquan Hu ◽  
...  
Keyword(s):  


2018 ◽  
Vol 10 (1) ◽  
pp. 70-73 ◽  
Author(s):  
Hun-Seok Lee ◽  
Hyangim Seo ◽  
Jei-Pil Wang ◽  
Hak-Sung Lee ◽  
Dong-Won Lee


Sign in / Sign up

Export Citation Format

Share Document